A362312 Sierpinski triangle read by rows and filled in the greedy way such that each row, each diagonal and each antidiagonal contains distinct nonnegative values.
0, 1, 2, 2, 1, 3, 0, 2, 4, 4, 3, 5, 1, 0, 6, 6, 0, 1, 5, 7, 3, 4, 2, 5, 8, 6, 9, 8, 7, 9, 4, 3, 8, 10, 3, 4, 11, 11, 5, 6, 0, 1, 3, 4, 10, 12, 2, 5, 13, 13, 6, 4, 1, 0, 7, 5, 12, 14, 5, 6, 7, 2, 3, 9, 15, 15, 7, 8, 1, 9, 0, 2, 5, 6, 4, 10, 11, 12, 13, 14, 16, 16, 14
Offset: 0
Examples
Sierpinski triangle begins (with dots denoting empty places): 0 1 2 2 . 1 3 0 2 4 4 . . . 3 5 1 . . 0 6 6 . 0 . 1 . 5 7 3 4 2 5 8 6 9 8 . . . . . . . 7 9 4 . . . . . . 3 8 10 . 3 . . . . . 4 . 11 11 5 6 0 . . . . 1 3 4 10 12 . . . 2 . . . 5 . . . 13 13 6 . . 4 1 . . 0 7 . . 5 12 14 . 5 . 6 . 7 . 2 . 3 . 9 . 15 15 7 8 1 9 0 2 5 6 4 10 11 12 13 14 16
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..6560 (rows for n = 0..255 flattened)
- Rémy Sigrist, Colored representation of the first 512 rows (the hue is function of the terms, black pixels denote 0's, white pixels denote empty places)
- Rémy Sigrist, C++ program
Comments