This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361749 #18 Jun 26 2023 09:40:30 %S A361749 1,1,2,12,261,22645,8264346,13150070522,93589674933872, %T A361749 3036609755945925595,455845471095088280120142, %U A361749 320342093420041869298750385976,1063978124653925432733949863518874116,16835366182312565093823092118182447742597067 %N A361749 a(n) is the number of n X n matrices with nonnegative integer entries, row sums 1,2,...,n and column sums 1,2,...,n. %H A361749 Andrew Howroyd, <a href="/A361749/a361749.gp.txt">PARI Program</a>, Mar 2023. %e A361749 a(3) = 12 because there are 12 possible 3 X 3 matrices with nonnegative integer entries, row sums 1,2,3 and column sums 1,2,3: %e A361749 [ 0 0 1 ] [ 0 0 1 ] [ 0 0 1 ] [ 0 0 1 ] %e A361749 [ 0 0 2 ] [ 0 1 1 ] [ 0 2 0 ] [ 1 0 1 ] %e A361749 [ 1 2 0 ], [ 1 1 1 ], [ 1 0 2 ], [ 0 2 1 ], %e A361749 . %e A361749 [ 0 0 1 ] [ 0 1 0 ] [ 0 1 0 ] [ 0 1 0 ] %e A361749 [ 1 1 0 ] [ 0 0 2 ] [ 0 1 1 ] [ 1 0 1 ] %e A361749 [ 0 1 2 ], [ 1 1 1 ], [ 1 0 2 ], [ 0 1 2 ], %e A361749 . %e A361749 [ 0 1 0 ] [ 1 0 0 ] [ 1 0 0 ] [ 1 0 0 ] %e A361749 [ 1 1 0 ] [ 0 0 2 ] [ 0 1 1 ] [ 0 2 0 ] %e A361749 [ 0 0 3 ], [ 0 2 1 ], [ 0 1 2 ], [ 0 0 3 ]. %p A361749 G:= proc(L,R,k) option remember; %p A361749 # number of solutions with first k entries of first row 0 %p A361749 local m,n,i; %p A361749 m:= nops(L); n:= nops(R); %p A361749 if m <= 1 then return 1 fi; %p A361749 if L[1] > convert(R[k+1..n],`+`) then return 0 fi; %p A361749 if k = n-1 then return procname(L[2..-1],subsop(n = R[n]-L[1], R),0) fi; %p A361749 add(procname(subsop(1=L[1]-i, L), subsop(k+1=R[k+1]-i, R), k+1), i=0..min(L[1],R[k+1])) %p A361749 end proc: %p A361749 seq(G([$1..n],[$1..n],0), n=0..8); %Y A361749 Cf. A000681, A110058. %K A361749 nonn %O A361749 0,3 %A A361749 _Robert Israel_, Mar 23 2023 %E A361749 a(10)-a(13) from _Andrew Howroyd_, Mar 29 2023 %E A361749 a(0)=1 prepended by _Alois P. Heinz_, Jun 26 2023