This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361750 #24 Mar 24 2023 17:14:30 %S A361750 23,223,230,232,233,235,237,323,523,723,1123,1323,1723,1923,2023,2223, %T A361750 2230,2232,2233,2235,2237,2300,2302,2303,2305,2307,2311,2313,2317, %U A361750 2319,2320,2322,2323,2325,2327,2330,2332,2333,2335,2337,2350,2352,2353,2355,2357,2370,2372,2373,2375,2377 %N A361750 Terms of A329150 that have several preimages. %C A361750 From k = 1 to 9, A329147(k) has more than one preimage only for k = 9 since A329147(9) = A329147(12) = 23; so, all terms of this sequence have in their decimal expansion the two-digit integer '23'; it follows that when || denotes concatenation, the terms of this sequence are of the form: %C A361750 X||23 as 223, 323, 523, 723, 1123, 1323, 1723, 1923, 2023, 2223, ... or, %C A361750 23||Y as 230, 232, 233, 235, 237, 2300, 2302, 2303, 2305, 2307, 2311, ... or, %C A361750 X||23||Y as 2230, 2232, 2233, 2235, 2237, 3230, 3232, 3233, ... %C A361750 Every term of this sequence has 2^q preimages, and the smallest terms with exactly 2^q preimages for q >= 1 are 23, 2323, 232323, ... with q times the 2-digit number 23 in its decimal expansion; hence, the 8 preimages of 232323 are 999, 9912, 9129, 91212, 1299, 12912, 12129 and 121212. %e A361750 One example for each type: %e A361750 23||2 = 232 = A329147(91) = A329147(121). %e A361750 7||23 = 723 = A329147(49) = A329147(412). %e A361750 2||23||5 = 2235 = A329147(193) = A329147(1123). %e A361750 23||23 = 2323 = A329147(99) = A329147(129) = A329147(1212) = A329147(912). %t A361750 p[n_] := If[n > 0, Prime[n], 0]; seq[ndigmax_] := Module[{t = Table[FromDigits[ Flatten @ IntegerDigits @ (p /@ IntegerDigits[n]) ], {n, 1, 10^ndigmax - 1}]}, Sort @ Select[Tally[t], First[#] < 10^ndigmax && Last[#] > 1 &][[;; , 1]]]; seq[4] (* _Amiram Eldar_, Mar 23 2023 *) %o A361750 (PARI) f(n) = if (n, fromdigits(concat(apply(d -> if (d, digits(prime(d)), [0]), digits(n)))), 0); \\ A329147 %o A361750 lista(nn) = {my(map = Map()); for (n=1, nn, my(m = f(n)); if (mapisdefined(map, m), mapput(map, m, 1+mapget(map, m)), mapput(map, m, 0));); my(list = List()); for (n=1, nn, if (mapisdefined(map, n), my(v = mapget(map, n)); if (#v > 0, listput(list, n)););); Vec(list);} \\ _Michel Marcus_, Mar 24 2023 %Y A361750 Cf. A329147, A329149, A329150. %K A361750 nonn,base %O A361750 1,1 %A A361750 _Bernard Schott_, Mar 23 2023