This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361756 #14 Mar 27 2023 03:42:43 %S A361756 0,0,1,0,2,0,1,2,3,0,1,4,0,2,5,0,1,2,3,4,5,6,0,2,7,0,1,2,3,7,8,0,1,4, %T A361756 9,0,2,5,7,10,0,1,2,3,4,5,6,7,8,9,10,11,0,1,4,12,0,2,5,13,0,1,2,3,4,5, %U A361756 6,12,13,14,0,2,7,15,0,1,2,3,7,8,15,16 %N A361756 Irregular triangle T(n, k), n >= 0, k = 1..A361757(n), read by rows; the n-th row lists the numbers k such that the Fibonacci numbers that appear in the dual Zeckendorf representation of k also appear in that of n. %C A361756 In other words, the n-th row lists the numbers k such that A003754(1+n) AND A003754(1+k) = A003754(1+k) (where AND denotes the bitwise AND operator). %C A361756 The dual Zeckendorf representation is also known as the lazy Fibonacci representation (see A356771 for further details). %H A361756 Rémy Sigrist, <a href="/A361756/b361756.txt">Table of n, a(n) for n = 0..9956</a> (rows for n = 0..377 flattened) %H A361756 Rémy Sigrist, <a href="/A361756/a361756.gp.txt">PARI program</a> %H A361756 <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a> %F A361756 T(n, 1) = 0. %F A361756 T(n, 2) = A003842(n - 1) for any n > 0. %F A361756 T(n, A361757(n)) = n. %e A361756 Triangle T(n, k) begins: %e A361756 n n-th row %e A361756 -- ------------------------------------- %e A361756 0 0 %e A361756 1 0, 1 %e A361756 2 0, 2 %e A361756 3 0, 1, 2, 3 %e A361756 4 0, 1, 4 %e A361756 5 0, 2, 5 %e A361756 6 0, 1, 2, 3, 4, 5, 6 %e A361756 7 0, 2, 7 %e A361756 8 0, 1, 2, 3, 7, 8 %e A361756 9 0, 1, 4, 9 %e A361756 10 0, 2, 5, 7, 10 %e A361756 11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 %e A361756 12 0, 1, 4, 12 %o A361756 (PARI) See Links section. %Y A361756 See A361755 for a similar sequence. %Y A361756 Cf. A003754, A003842, A356771, A361757. %K A361756 nonn,base,tabf %O A361756 0,5 %A A361756 _Rémy Sigrist_, Mar 23 2023