cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361783 Denominators of the harmonic means of the bi-unitary divisors of the positive integers.

Original entry on oeis.org

1, 3, 2, 5, 3, 1, 4, 15, 5, 9, 6, 5, 7, 3, 2, 27, 9, 5, 10, 3, 8, 9, 12, 5, 13, 21, 10, 5, 15, 3, 16, 21, 4, 27, 12, 25, 19, 15, 14, 9, 21, 2, 22, 15, 1, 9, 24, 9, 25, 39, 6, 35, 27, 5, 18, 15, 20, 45, 30, 1, 31, 12, 20, 119, 21, 3, 34, 45, 8, 9, 36, 25, 37, 57
Offset: 1

Views

Author

Amiram Eldar, Mar 24 2023

Keywords

Crossrefs

Cf. A188999, A222266, A286324, A286325 (positions of 1's), A361782 (numerators).
Similar sequences: A099378, A103340, A361317.

Programs

  • Mathematica
    f[p_, e_] := p^e * If[OddQ[e], (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))]; a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); denominator(n * prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2];  if(e%2, (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))))); }

Formula

a(n) = denominator(n*A286324(n)/A188999(n)).