This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361784 #9 Mar 24 2023 11:15:14 %S A361784 1,2,3,4,4,6,7,7,8,11,13,13,12,10,16,7,18,16,15,24,15,20,20,18,14,22, %T A361784 25,24,19,25,23,27,33,31,44,32,34,30,25,36,13,46,31,21,29,40,38,33,28, %U A361784 40,48,38,29,45,34,47,28,32,32,44,60,27,32,28,46,26,51 %N A361784 Harmonic means the bi-unitary divisors of the bi-unitary harmonic numbers (A286325). %H A361784 Amiram Eldar, <a href="/A361784/b361784.txt">Table of n, a(n) for n = 1..313</a> %H A361784 Jozsef Sandor, <a href="https://arxiv.org/abs/1105.0294">On bi-unitary harmonic numbers</a>, arXiv:1105.0294 [math.NT], 2011. %F A361784 a(n) = A361782(A286325(n)). %e A361784 a(3) = 3 since A286325(3) = 45, the bi-unitary divisors of 45 are 1, 5, 9, and 45, and their harmonic mean is 3. %t A361784 f[p_, e_] := p^e * If[OddQ[e], (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 10^5], IntegerQ] %o A361784 (PARI) bhmean(n) = {my(f = factor(n), p, e); n * prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; if(e%2, (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2)))); } %o A361784 lista(kmax) = {my(bh); for(k = 1, kmax, bh = bhmean(k); if(denominator(bh) == 1, print1(bh, ", "))); } %Y A361784 Cf. A188999, A286324, A286325, A361782, A361783. %Y A361784 Similar sequences: A001600, A006087, A361318. %K A361784 nonn %O A361784 1,2 %A A361784 _Amiram Eldar_, Mar 24 2023