cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361785 Indices of records in the sequence of bi-unitary harmonic means A361782(k)/A361783(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 54, 56, 60, 84, 96, 120, 168, 210, 240, 270, 280, 360, 420, 480, 672, 840, 1080, 1320, 1512, 1680, 1890, 2160, 2310, 2520, 3080, 3360, 4320, 5280, 6048, 7392, 7560, 9240, 10920, 11880, 14040, 15120, 18480, 20790
Offset: 1

Views

Author

Amiram Eldar, Mar 24 2023

Keywords

Examples

			The harmonic means of the bi-unitary divisors of the first 6 positive integers are 1 < 4/3 < 3/2 < 8/5 < 5/3 < 2. A361782(7)/A361783(7) = 9/5 < 2, and the next record, A361782(8)/A361783(8) = 32/15, occurs at 8. Therefore, the first 7 terms of this sequence are 1, 2, 3, 4, 5, 6 and 8.
		

Crossrefs

Similar sequences: A179971, A348654, A361319.
Other sequences related to records of bi-unitary divisors: A293185, A292983, A292984.

Programs

  • Mathematica
    f[p_, e_] := p^e * If[OddQ[e], (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))]; buhmean[1] = 1; buhmean[n_] := Times @@ f @@@ FactorInteger[n]; seq[kmax_] := Module[{buh, buhmax = 0, s = {}}, Do[buh = buhmean[k]; If[buh > buhmax, buhmax = buh; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[20000]
  • PARI
    buhmean(n) = {my(f = factor(n), p, e); n * prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2];  if(e%2, (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2)))); }
    lista(kmax) = {my(buh, buhmax=0); for(k = 1, kmax, buh = buhmean(k); if(buh > buhmax, buhmax = buh; print1(k, ", "))); }