A361787 Bi-unitary arithmetic numbers k whose mean bi-unitary divisor is a bi-unitary divisor of k.
1, 6, 60, 270, 420, 630, 672, 2970, 5460, 8190, 10080, 22848, 30240, 99792, 136500, 172900, 204750, 208656, 245700, 249480, 312480, 332640, 342720, 385560, 491400, 695520, 708288, 791700, 819000, 861840, 1028160, 1037400, 1187550, 1228500, 1421280, 1528800, 1571328
Offset: 1
Keywords
Examples
6 is a term since the arithmetic mean of its bi-unitary divisors, {1, 2, 3, 6}, is 3, and 3 is also a bi-unitary divisor of 6. 60 is a term since the arithmetic mean of its bi-unitary divisors, {1, 3, 4, 5, 12, 15, 20, 60}, is 15, and 15 is also a bi-unitary divisor of 60.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..236
Crossrefs
Programs
-
Mathematica
biudivQ[f_, d_] := AllTrue[f, OddQ[Last[#]] || IntegerExponent[d, First[#]] != Last[#]/2 &]; biuDivs[n_] := Module[{d = Divisors[n], f = FactorInteger[n]}, Select[d, biudivQ[f, #] &]]; Select[Range[10^5], IntegerQ[(r = Mean[(i = biuDivs[#])])] && MemberQ[i, r] &]
-
PARI
isbdiv(f, d) = {for (i=1, #f~, if(f[i, 2]%2 == 0 && valuation(d, f[i, 1]) == f[i, 2]/2, return(0))); 1;} is(n) = {my(f = factor(n), r, p, e); r = prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; if(e%2, (p^(e+1)-1)/((e + 1)*(p-1)), ((p^(e+1)-1)/(p-1)-p^(e/2))/e)); denominator(r) == 1 && n%r==0 && isbdiv(f, r); }
Comments