cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361793 Sum of the squares d^2 of the divisors d satisfying d^3|n.

This page as a plain text file.
%I A361793 #30 Jun 26 2024 04:32:50
%S A361793 1,1,1,1,1,1,1,5,1,1,1,1,1,1,1,5,1,1,1,1,1,1,1,5,1,1,10,1,1,1,1,5,1,1,
%T A361793 1,1,1,1,1,5,1,1,1,1,1,1,1,5,1,1,1,1,1,10,1,5,1,1,1,1,1,1,1,21,1,1,1,
%U A361793 1,1,1,1,5,1,1,1,1,1,1,1,5
%N A361793 Sum of the squares d^2 of the divisors d satisfying d^3|n.
%C A361793 The Mobius transform is 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, ... = n^(2/3)*A010057(n).
%H A361793 Winston de Greef, <a href="/A361793/b361793.txt">Table of n, a(n) for n = 1..10000</a>
%H A361793 A. Dixit, B. Maji, and A. Vatwani, <a href="https://arxiv.org/abs/2303.09937">Voronoi summation formula for the generalized divisor function sigma_z^k(n)</a>, arXiv:2303.09937 [math.NT], 2023, sigma(z=2,k=3,n).
%F A361793 a(n) = Sum_{d^3|n} d^2.
%F A361793 Multiplicative with a(p^e) = (p^(2*(floor(e/3) + 1)) - 1)/(p^2 - 1). - _Amiram Eldar_, Mar 24 2023
%F A361793 G.f.: Sum_{k>=1} k^2 * x^(k^3) / (1 - x^(k^3)). - _Ilya Gutkovskiy_, Jun 05 2024
%F A361793 From _Vaclav Kotesovec_, Jun 26 2024: (Start)
%F A361793 Dirichlet g.f.: zeta(s)*zeta(3*s-2).
%F A361793 Sum_{k=1..n} a(k) ~ n*(log(n) + 4*gamma - 1)/3, where gamma is the Euler-Mascheroni constant A001620. (End)
%p A361793 gsigma := proc(n,z,k)
%p A361793     local a,d ;
%p A361793     a := 0 ;
%p A361793     for d in numtheory[divisors](n) do
%p A361793         if modp(n,d^k) = 0 then
%p A361793             a := a+d^z ;
%p A361793         end if ;
%p A361793     end do:
%p A361793     a ;
%p A361793 end proc:
%p A361793 seq( gsigma(n,2,3),n=1..80) ;
%t A361793 f[p_, e_] := (p^(2*(Floor[e/3] + 1)) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Mar 24 2023 *)
%o A361793 (PARI) a(n) = sumdiv(n, d, if (ispower(d, 3), sqrtnint(d, 3)^2)); \\ _Michel Marcus_, Mar 24 2023
%o A361793 (PARI) for(n=1, 100, print1(direuler(p=2, n, (1/((1-X)*(1-p^2*X^3))))[n], ", ")) \\ _Vaclav Kotesovec_, Jun 26 2024
%o A361793 (Python)
%o A361793 from math import prod
%o A361793 from sympy import factorint
%o A361793 def A361793(n): return prod((p**(e//3+1<<1)-1)//(p**2-1) for p, e in factorint(n).items()) # _Chai Wah Wu_, Mar 24 2023
%Y A361793 Cf. A035316, A069290, A333843.
%K A361793 nonn,mult,easy
%O A361793 1,8
%A A361793 _R. J. Mathar_, Mar 24 2023