cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361796 Prime numbers preceded by two consecutive numbers which are products of four distinct primes (or tetraprimes).

Original entry on oeis.org

8647, 15107, 20407, 20771, 21491, 23003, 23531, 24767, 24971, 27967, 29147, 33287, 34847, 36779, 42187, 42407, 42667, 43331, 43991, 46807, 46867, 51431, 52691, 52747, 53891, 54167, 58567, 63247, 63367, 69379, 71711, 73607, 73867, 74167, 76507, 76631, 76847, 80447, 83591, 84247, 86243
Offset: 1

Views

Author

Massimo Kofler, Apr 26 2023

Keywords

Examples

			8647 (prime), 8646 = 2*3*11*131 and 8645 = 5*7*13*19.
15107 (prime), 15106 = 2*7*13*83 and 15105 = 3*5*19*53.
20407 (prime), 20406 = 2*3*19*179 and 20405 = 5*7*11*53.
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # for terms <= N
    TP:= NULL:
    P:= select(isprime, [2,seq(i,i=3..N/30,2)]):
    for i from 1 to nops(P) do
      for j from 1 to i-1 while P[i]*P[j] <= N/6 do
        for k from 1 to j-1 while P[i]*P[j]*P[k] <= N/2 do
          TP:= TP, op(select(`<=`,map(`*`,P[1..k-1],P[i]*P[j]*P[k]),N));
    od od od:
    TP:= {TP}:
    TTP:= TP intersect map(`-`,TP,1):
    sort(convert(select(isprime, map(`+`,TTP,2)),list)); # Robert Israel, Apr 28 2023
  • Mathematica
    q[n_] := FactorInteger[n][[;; , 2]] == {1, 1, 1, 1}; Select[Prime[Range[10^4]], AllTrue[# - {1, 2}, q] &] (* Amiram Eldar, Apr 26 2023 *)