A361796 Prime numbers preceded by two consecutive numbers which are products of four distinct primes (or tetraprimes).
8647, 15107, 20407, 20771, 21491, 23003, 23531, 24767, 24971, 27967, 29147, 33287, 34847, 36779, 42187, 42407, 42667, 43331, 43991, 46807, 46867, 51431, 52691, 52747, 53891, 54167, 58567, 63247, 63367, 69379, 71711, 73607, 73867, 74167, 76507, 76631, 76847, 80447, 83591, 84247, 86243
Offset: 1
Keywords
Examples
8647 (prime), 8646 = 2*3*11*131 and 8645 = 5*7*13*19. 15107 (prime), 15106 = 2*7*13*83 and 15105 = 3*5*19*53. 20407 (prime), 20406 = 2*3*19*179 and 20405 = 5*7*11*53.
Links
- Robert Israel, Table of n, a(n) for n = 1..1914
Programs
-
Maple
N:= 10^5: # for terms <= N TP:= NULL: P:= select(isprime, [2,seq(i,i=3..N/30,2)]): for i from 1 to nops(P) do for j from 1 to i-1 while P[i]*P[j] <= N/6 do for k from 1 to j-1 while P[i]*P[j]*P[k] <= N/2 do TP:= TP, op(select(`<=`,map(`*`,P[1..k-1],P[i]*P[j]*P[k]),N)); od od od: TP:= {TP}: TTP:= TP intersect map(`-`,TP,1): sort(convert(select(isprime, map(`+`,TTP,2)),list)); # Robert Israel, Apr 28 2023
-
Mathematica
q[n_] := FactorInteger[n][[;; , 2]] == {1, 1, 1, 1}; Select[Prime[Range[10^4]], AllTrue[# - {1, 2}, q] &] (* Amiram Eldar, Apr 26 2023 *)