cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361801 Number of nonempty subsets of {1..n} with median n/2.

This page as a plain text file.
%I A361801 #11 Apr 11 2023 08:39:39
%S A361801 0,0,1,1,4,4,14,14,49,49,175,175,637,637,2353,2353,8788,8788,33098,
%T A361801 33098,125476,125476,478192,478192,1830270,1830270,7030570,7030570,
%U A361801 27088870,27088870,104647630,104647630,405187825,405187825,1571990935,1571990935
%N A361801 Number of nonempty subsets of {1..n} with median n/2.
%C A361801 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
%F A361801 a(n) = A079309(floor(n/2)). - _Alois P. Heinz_, Apr 11 2023
%e A361801 The subset {1,2,3,5} of {1..5} has median 5/2, so is counted under a(5).
%e A361801 The subset {2,3,5} of {1..6} has median 6/2, so is counted under a(6).
%e A361801 The a(0) = 0 through a(7) = 14 subsets:
%e A361801   .  .  {1}  {1,2}  {2}      {1,4}      {3}          {1,6}
%e A361801                     {1,3}    {2,3}      {1,5}        {2,5}
%e A361801                     {1,2,3}  {1,2,3,4}  {2,4}        {3,4}
%e A361801                     {1,2,4}  {1,2,3,5}  {1,3,4}      {1,2,5,6}
%e A361801                                         {1,3,5}      {1,2,5,7}
%e A361801                                         {1,3,6}      {1,3,4,5}
%e A361801                                         {2,3,4}      {1,3,4,6}
%e A361801                                         {2,3,5}      {1,3,4,7}
%e A361801                                         {2,3,6}      {2,3,4,5}
%e A361801                                         {1,2,4,5}    {2,3,4,6}
%e A361801                                         {1,2,4,6}    {2,3,4,7}
%e A361801                                         {1,2,3,4,5}  {1,2,3,4,5,6}
%e A361801                                         {1,2,3,4,6}  {1,2,3,4,5,7}
%e A361801                                         {1,2,3,5,6}  {1,2,3,4,6,7}
%t A361801 Table[Length[Select[Subsets[Range[n]],Median[#]==n/2&]],{n,0,10}]
%Y A361801 A bisection is A079309.
%Y A361801 The case with n's has bisection A057552.
%Y A361801 The case without n's is A100066, bisection A006134.
%Y A361801 A central diagonal of A231147.
%Y A361801 A version for partitions is A361849.
%Y A361801 For mean instead of median we have A362046.
%Y A361801 A000975 counts subsets with integer median, for mean A327475.
%Y A361801 A007318 counts subsets by length.
%Y A361801 A013580 appears to count subsets by median, by mean A327481.
%Y A361801 A360005(n)/2 represents the median statistic for partitions.
%Y A361801 Cf. A024718, A325347, A359893, A361654, A361864, A361866, A361911.
%K A361801 nonn,easy
%O A361801 0,5
%A A361801 _Gus Wiseman_, Apr 07 2023