This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361801 #11 Apr 11 2023 08:39:39 %S A361801 0,0,1,1,4,4,14,14,49,49,175,175,637,637,2353,2353,8788,8788,33098, %T A361801 33098,125476,125476,478192,478192,1830270,1830270,7030570,7030570, %U A361801 27088870,27088870,104647630,104647630,405187825,405187825,1571990935,1571990935 %N A361801 Number of nonempty subsets of {1..n} with median n/2. %C A361801 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %F A361801 a(n) = A079309(floor(n/2)). - _Alois P. Heinz_, Apr 11 2023 %e A361801 The subset {1,2,3,5} of {1..5} has median 5/2, so is counted under a(5). %e A361801 The subset {2,3,5} of {1..6} has median 6/2, so is counted under a(6). %e A361801 The a(0) = 0 through a(7) = 14 subsets: %e A361801 . . {1} {1,2} {2} {1,4} {3} {1,6} %e A361801 {1,3} {2,3} {1,5} {2,5} %e A361801 {1,2,3} {1,2,3,4} {2,4} {3,4} %e A361801 {1,2,4} {1,2,3,5} {1,3,4} {1,2,5,6} %e A361801 {1,3,5} {1,2,5,7} %e A361801 {1,3,6} {1,3,4,5} %e A361801 {2,3,4} {1,3,4,6} %e A361801 {2,3,5} {1,3,4,7} %e A361801 {2,3,6} {2,3,4,5} %e A361801 {1,2,4,5} {2,3,4,6} %e A361801 {1,2,4,6} {2,3,4,7} %e A361801 {1,2,3,4,5} {1,2,3,4,5,6} %e A361801 {1,2,3,4,6} {1,2,3,4,5,7} %e A361801 {1,2,3,5,6} {1,2,3,4,6,7} %t A361801 Table[Length[Select[Subsets[Range[n]],Median[#]==n/2&]],{n,0,10}] %Y A361801 A bisection is A079309. %Y A361801 The case with n's has bisection A057552. %Y A361801 The case without n's is A100066, bisection A006134. %Y A361801 A central diagonal of A231147. %Y A361801 A version for partitions is A361849. %Y A361801 For mean instead of median we have A362046. %Y A361801 A000975 counts subsets with integer median, for mean A327475. %Y A361801 A007318 counts subsets by length. %Y A361801 A013580 appears to count subsets by median, by mean A327481. %Y A361801 A360005(n)/2 represents the median statistic for partitions. %Y A361801 Cf. A024718, A325347, A359893, A361654, A361864, A361866, A361911. %K A361801 nonn,easy %O A361801 0,5 %A A361801 _Gus Wiseman_, Apr 07 2023