cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361805 Expansion of Product_{j=1..n, k=1..n} (1 + x^(k^j)) / (1 - x^(k^j)).

This page as a plain text file.
%I A361805 #31 Jan 29 2024 09:01:34
%S A361805 1,2,10,52,278,1508,8262,45604,253186,1412196,7906866,44411420,
%T A361805 250124308,1411963200,7986664250,45255888828,256840959728,
%U A361805 1459686175768,8306130772008,47318321533008,269839722667800,1540242835509060,8799238591245006,50308756959106988
%N A361805 Expansion of Product_{j=1..n, k=1..n} (1 + x^(k^j)) / (1 - x^(k^j)).
%H A361805 Vaclav Kotesovec, <a href="/A361805/b361805.txt">Table of n, a(n) for n = 0..1000</a>
%F A361805 a(n) ~ c * (1 + sqrt(2))^(2*n) / sqrt(n), where c = 0.6431307610999754935775134585988078560575016233514072350040712130921818...
%t A361805 Table[SeriesCoefficient[Product[Product[(1+x^(k^j))/(1-x^(k^j)), {k, 1, n^(1/j)}], {j, 1, n}], {x, 0, n}], {n, 0, 40}]
%Y A361805 Cf. A369577, A369578.
%Y A361805 Cf. A015128, A103265, A280263.
%Y A361805 Cf. A000041, A001156, A003108.
%Y A361805 Cf. A000009, A033461, A279329.
%K A361805 nonn
%O A361805 0,2
%A A361805 _Vaclav Kotesovec_, Jan 28 2024