cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361810 a(n) is the sum of divisors of n that are both infinitary and exponential.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 30, 25, 26, 30, 28, 29, 30, 31, 34, 33, 34, 35, 36, 37, 38, 39, 50, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 60, 55, 70, 57, 58, 59, 60, 61, 62, 63, 68, 65, 66, 67, 68
Offset: 1

Views

Author

Amiram Eldar, Mar 25 2023

Keywords

Comments

The number of these divisors is A359411(n).
The indices of records of a(n)/n are the primorials (A002110) cubed, i.e., 1 and the terms of A115964.

Examples

			a(8) = 10 since 8 has 2 divisors that are both infinitary and exponential, 2 and 8, and 2 + 8 = 10.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &, BitOr[#, e] == e &]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(p,e) = sumdiv(e, d, p^d*(bitor(d, e) == e));
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, s(f[i, 1], f[i, 2])); }

Formula

Multiplicative with a(p^e) = Sum_{d|e, bitor(d, e) == e} p^d.
a(n) >= n, with equality if and only if n is in A138302.
limsup_{n->oo} a(n)/n = Product_{p prime} (1 + 1/p^2) = 15/Pi^2 (A082020).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((1 - 1/p)*(1 + Sum_{e>=1} Sum_{d|e, bitor(d, e) == e} p^(d-2*e))) = 0.51015879911178031024... .