A361811 Smallest members of infinitary sociable quadruples.
1026, 10098, 10260, 41800, 45696, 100980, 241824, 685440, 4938136, 13959680, 14958944, 25581600, 28158165, 32440716, 36072320, 55204500, 74062944, 81128632, 149589440, 178327008, 192793770, 209524210, 283604220, 319848642, 498215416, 581112000, 740629440, 1236402232
Offset: 1
Keywords
Examples
1026 is a term since the iterations of the sum of aliquot infinitary divisors function (A126168) that start with 1026 are cyclic with period 4: 1026, 1374, 1386, 1494, 1026, ..., and 1026 is the smallest member of the quadruple. The first five quadruples are {1026, 1374, 1386, 1494}, {10098, 15822, 19458, 15102}, {10260, 13740, 13860, 14940}, {41800, 51800, 66760, 83540}, {45696, 101184, 94656, 88944}.
Links
- Graeme L. Cohen, On an integer's infinitary divisors, Mathematics of Computation, Vol. 54, No. 189 (1990), pp. 395-411.
- Jan Munch Pedersen, Known Infinitary Sociable Numbers of order four.
Crossrefs
Programs
-
Mathematica
f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]]>0, 1 + p^(2^(m-j)), 1], {j, 1, m}]]; infs[n_] := Times @@ f @@@ FactorInteger[n] - n; infs[1] = 0; seq[n_] := NestList[infs, n, 4][[2;; 5]] ; q[n_] := Module[{s = seq[n]}, n == Min[s] && Count[s, n] == 1]; Select[Range[10^6], q]
-
PARI
infs(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], f[i, 1]^(2^(#b-k)) + 1, 1))) - n; } is(n) = {my(m = n); for(k = 1, 4, m = infs(m); if(k < 4 && m <= n, return(0))); m == n; }
Comments