cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361811 Smallest members of infinitary sociable quadruples.

Original entry on oeis.org

1026, 10098, 10260, 41800, 45696, 100980, 241824, 685440, 4938136, 13959680, 14958944, 25581600, 28158165, 32440716, 36072320, 55204500, 74062944, 81128632, 149589440, 178327008, 192793770, 209524210, 283604220, 319848642, 498215416, 581112000, 740629440, 1236402232
Offset: 1

Views

Author

Amiram Eldar, Mar 25 2023

Keywords

Comments

The first 8 terms were found by Cohen (1990).

Examples

			1026 is a term since the iterations of the sum of aliquot infinitary divisors function (A126168) that start with 1026 are cyclic with period 4: 1026, 1374, 1386, 1494, 1026, ..., and 1026 is the smallest member of the quadruple.
The first five quadruples are {1026, 1374, 1386, 1494}, {10098, 15822, 19458, 15102}, {10260, 13740, 13860, 14940}, {41800, 51800, 66760, 83540}, {45696, 101184, 94656, 88944}.
		

Crossrefs

Cf. A007357 (period 1), A126169 and A126170 (period 2).
Subsequence of A004607 (all cycles of length > 2).
Similar sequences: A090615 (all divisors), A319902 (unitary), A319915 (bi-unitary).

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]]>0, 1 + p^(2^(m-j)), 1], {j, 1, m}]]; infs[n_] := Times @@ f @@@ FactorInteger[n] - n;  infs[1] = 0; seq[n_] := NestList[infs, n, 4][[2;; 5]] ; q[n_] := Module[{s = seq[n]}, n == Min[s] && Count[s, n] == 1]; Select[Range[10^6], q]
  • PARI
    infs(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], f[i, 1]^(2^(#b-k)) + 1, 1))) - n; }
    is(n) = {my(m = n); for(k = 1, 4, m = infs(m); if(k < 4 && m <= n, return(0))); m == n; }