cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361819 Irregular triangle read by rows where T(n,k) is the distance which number A361660(n,k) moves in the process described in A361642.

This page as a plain text file.
%I A361819 #24 Apr 13 2023 08:30:37
%S A361819 2,3,3,4,2,2,4,5,3,4,3,5,6,4,2,3,3,2,4,6,7,5,3,5,2,5,3,5,7,8,6,4,2,4,
%T A361819 4,4,4,2,4,6,8,9,7,5,3,6,3,3,3,3,6,3,5,7,9,10,8,6,4,2,5,5,2,6,2,5,5,2,
%U A361819 4,6,8,10,11,9,7,5,3,7,4,4,5,5,4,4,7,3,5,7,9,11
%N A361819 Irregular triangle read by rows where T(n,k) is the distance which number A361660(n,k) moves in the process described in A361642.
%C A361819 Number A361660(n,k) moves to the right and then down and T(n,k) counts the steps in both.
%C A361819 All moves are T(n,k) >= 2 steps since a number moves at least one step right and one step down.
%C A361819 Row n has sum A002378(n-1) which is the total steps to move a column down to a row irrespective of the order of movement.
%C A361819 Each row is a palindrome (the same when reversed), since the moves in A361642 are exactly the reverse moves to send its row back to the starting column.
%e A361819 Irregular triangle T(n,k) begins:
%e A361819   n/k     |   1    2    3    4    5    6    7    8    9
%e A361819   ------------------------------------------------------
%e A361819   1       |   (empty row)
%e A361819   2       |   2;
%e A361819   3       |   3,   3;
%e A361819   4       |   4,   2,   2,   4;
%e A361819   5       |   5,   3,   4,   3,   5;
%e A361819   6       |   6,   4,   2,   3,   3,   2,   4,   6;
%e A361819   7       |   7,   5,   3,   5,   2,   5,   3,   5,   7;
%e A361819  ...
%o A361819 (MATLAB)
%o A361819 function a = A361819( max_row )
%o A361819     k = 1;
%o A361819     for r = 2:max_row
%o A361819         h = zeros(1,r); h(1) = r;
%o A361819         while max(h) > 1
%o A361819            j =  find(h == max(h), 1, 'last' );
%o A361819            m =  find(h < max(h)-1, 1, 'first' );
%o A361819            a(k) = (m-j) + (h(j)-h(m)) - 1;
%o A361819            h(j) = h(j) - 1; h(m) = h(m) + 1;
%o A361819            k = k+1;
%o A361819         end
%o A361819     end
%o A361819 end % _Thomas Scheuerle_, Mar 27 2023
%Y A361819 Cf. A361642, A361660, A002541 (row lengths), A002378 (row sums).
%K A361819 nonn,tabf
%O A361819 1,1
%A A361819 _Tamas Sandor Nagy_, Mar 25 2023