This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361819 #24 Apr 13 2023 08:30:37 %S A361819 2,3,3,4,2,2,4,5,3,4,3,5,6,4,2,3,3,2,4,6,7,5,3,5,2,5,3,5,7,8,6,4,2,4, %T A361819 4,4,4,2,4,6,8,9,7,5,3,6,3,3,3,3,6,3,5,7,9,10,8,6,4,2,5,5,2,6,2,5,5,2, %U A361819 4,6,8,10,11,9,7,5,3,7,4,4,5,5,4,4,7,3,5,7,9,11 %N A361819 Irregular triangle read by rows where T(n,k) is the distance which number A361660(n,k) moves in the process described in A361642. %C A361819 Number A361660(n,k) moves to the right and then down and T(n,k) counts the steps in both. %C A361819 All moves are T(n,k) >= 2 steps since a number moves at least one step right and one step down. %C A361819 Row n has sum A002378(n-1) which is the total steps to move a column down to a row irrespective of the order of movement. %C A361819 Each row is a palindrome (the same when reversed), since the moves in A361642 are exactly the reverse moves to send its row back to the starting column. %e A361819 Irregular triangle T(n,k) begins: %e A361819 n/k | 1 2 3 4 5 6 7 8 9 %e A361819 ------------------------------------------------------ %e A361819 1 | (empty row) %e A361819 2 | 2; %e A361819 3 | 3, 3; %e A361819 4 | 4, 2, 2, 4; %e A361819 5 | 5, 3, 4, 3, 5; %e A361819 6 | 6, 4, 2, 3, 3, 2, 4, 6; %e A361819 7 | 7, 5, 3, 5, 2, 5, 3, 5, 7; %e A361819 ... %o A361819 (MATLAB) %o A361819 function a = A361819( max_row ) %o A361819 k = 1; %o A361819 for r = 2:max_row %o A361819 h = zeros(1,r); h(1) = r; %o A361819 while max(h) > 1 %o A361819 j = find(h == max(h), 1, 'last' ); %o A361819 m = find(h < max(h)-1, 1, 'first' ); %o A361819 a(k) = (m-j) + (h(j)-h(m)) - 1; %o A361819 h(j) = h(j) - 1; h(m) = h(m) + 1; %o A361819 k = k+1; %o A361819 end %o A361819 end %o A361819 end % _Thomas Scheuerle_, Mar 27 2023 %Y A361819 Cf. A361642, A361660, A002541 (row lengths), A002378 (row sums). %K A361819 nonn,tabf %O A361819 1,1 %A A361819 _Tamas Sandor Nagy_, Mar 25 2023