This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361842 #22 Jul 12 2024 10:17:08 %S A361842 1,3,27,243,2352,23607,242757,2539431,26904492,287858421,3104029755, %T A361842 33684914907,367483636746,4026930734223,44295829667055, %U A361842 488855016668727,5410588668898995,60035381850523284,667643481187840206,7439651232903588528,83050643822779921347 %N A361842 Expansion of 1/(1 - 9*x*(1+x)^3)^(1/3). %H A361842 Winston de Greef, <a href="/A361842/b361842.txt">Table of n, a(n) for n = 0..932</a> %F A361842 n*a(n) = 3 * ( (3*n-2)*a(n-1) + 3*(3*n-4)*a(n-2) + 3*(3*n-6)*a(n-3) + (3*n-8)*a(n-4) ) for n > 3. %F A361842 a(n) = Sum_{k=0..n} (-9)^k * binomial(-1/3,k) * binomial(3*k,n-k). %F A361842 a(n) = (-9)^n*binomial(-1/3, n)*hypergeom([(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4], [1/3-n, 2/3-n, 2/3-n], -2^8/3^5). - _Stefano Spezia_, Jul 11 2024 %t A361842 a[n_]:=(-9)^n*Binomial[-1/3, n]HypergeometricPFQ[{(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4}, {1/3-n, 2/3-n, 2/3-n}, -2^8/3^5]; Array[a,21,0] (* _Stefano Spezia_, Jul 11 2024 *) %o A361842 (PARI) my(N=30, x='x+O('x^N)); Vec(1/(1-9*x*(1+x)^3)^(1/3)) %Y A361842 Column k=3 of A361839. %Y A361842 Cf. A099234, A361812, A361845. %K A361842 nonn %O A361842 0,2 %A A361842 _Seiichi Manyama_, Mar 26 2023