This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361851 #9 Mar 31 2023 05:01:37 %S A361851 1,2,3,5,7,11,12,18,23,31,37,51,58,75,96,116,126,184,193,253,307,346, %T A361851 402,511,615,678,792,1045,1088,1386,1419,1826,2181,2293,2779,3568, %U A361851 3659,3984,4867,5885,6407,7732,8124,9400,11683,13025,13269,16216,17774,22016 %N A361851 Number of integer partitions of n such that (length) * (maximum) <= 2*n. %C A361851 Also partitions such that (maximum) <= 2*(mean). %C A361851 These are partitions whose complement (see example) has size <= n. %e A361851 The a(1) = 1 through a(7) = 12 partitions: %e A361851 (1) (2) (3) (4) (5) (6) (7) %e A361851 (11) (21) (22) (32) (33) (43) %e A361851 (111) (31) (41) (42) (52) %e A361851 (211) (221) (51) (61) %e A361851 (1111) (311) (222) (322) %e A361851 (2111) (321) (331) %e A361851 (11111) (411) (421) %e A361851 (2211) (2221) %e A361851 (3111) (3211) %e A361851 (21111) (22111) %e A361851 (111111) (211111) %e A361851 (1111111) %e A361851 The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 <= 2*7, so y is counted under a(7). %e A361851 The partition y = (5,2,1,1) has length 4 and maximum 5, and 4*5 is not <= 2*9, so y is not counted under a(9). %e A361851 The partition y = (3,2,1,1) has diagram: %e A361851 o o o %e A361851 o o . %e A361851 o . . %e A361851 o . . %e A361851 with complement of size 5, and 5 <= 7, so y is counted under a(7). %t A361851 Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#<=2n&]],{n,30}] %Y A361851 For length instead of mean we have A237755. %Y A361851 For minimum instead of mean we have A237824. %Y A361851 For median instead of mean we have A361848. %Y A361851 The equal case for median is A361849, ranks A361856. %Y A361851 The unequal case is A361852, median A361858. %Y A361851 The equal case is A361853, ranks A361855. %Y A361851 Reversing the inequality gives A361906, unequal case A361907. %Y A361851 A000041 counts integer partitions, strict A000009. %Y A361851 A008284 counts partitions by length, A058398 by mean. %Y A361851 A051293 counts subsets with integer mean. %Y A361851 A067538 counts partitions with integer mean. %Y A361851 Cf. A111907, A237984, A240219, A324521, A324562, A327482, A349156, A360068, A360071, A360241, A361394, A361859. %K A361851 nonn %O A361851 1,2 %A A361851 _Gus Wiseman_, Mar 28 2023