This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361852 #7 Mar 31 2023 05:01:30 %S A361852 1,2,3,5,7,9,12,17,21,27,37,41,58,67,80,106,126,153,193,209,263,326, %T A361852 402,419,565,650,694,891,1088,1120,1419,1672,1987,2245,2345,2856,3659, %U A361852 3924,4519,4975,6407,6534,8124,8280,9545,12937,13269,13788,16474,20336 %N A361852 Number of integer partitions of n such that (length) * (maximum) < 2n. %C A361852 Also partitions such that (maximum) < 2*(mean). %e A361852 The a(1) = 1 through a(7) = 12 partitions: %e A361852 (1) (2) (3) (4) (5) (6) (7) %e A361852 (11) (21) (22) (32) (33) (43) %e A361852 (111) (31) (41) (42) (52) %e A361852 (211) (221) (51) (61) %e A361852 (1111) (311) (222) (322) %e A361852 (2111) (321) (331) %e A361852 (11111) (2211) (421) %e A361852 (21111) (2221) %e A361852 (111111) (3211) %e A361852 (22111) %e A361852 (211111) %e A361852 (1111111) %e A361852 For example, the partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 < 2*7, so y is counted under a(7). %t A361852 Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#<2n&]],{n,30}] %Y A361852 For length instead of mean we have A237754. %Y A361852 Allowing equality gives A237755, for median A361848. %Y A361852 For equal median we have A361849, ranks A361856. %Y A361852 The equal version is A361853, ranks A361855. %Y A361852 For median instead of mean we have A361858. %Y A361852 The complement is counted by A361906. %Y A361852 Reversing the inequality gives A361907. %Y A361852 A000041 counts integer partitions, strict A000009. %Y A361852 A008284 counts partitions by length, A058398 by mean. %Y A361852 A051293 counts subsets with integer mean. %Y A361852 A067538 counts partitions with integer mean. %Y A361852 Cf. A027193, A111907, A116608, A237824, A237984, A324517, A327482, A349156, A360068, A360071, A361394. %K A361852 nonn %O A361852 1,2 %A A361852 _Gus Wiseman_, Mar 29 2023