This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361853 #6 Mar 31 2023 05:01:23 %S A361853 0,0,0,0,0,2,0,1,2,4,0,10,0,8,16,10,0,31,0,44,44,20,0,92,50,28,98,154, %T A361853 0,266,0,154,194,48,434,712,0,60,348,910,0,1198,0,1120,2138,88,0,2428, %U A361853 1300,1680,912,2506,0,4808,4800,5968,1372,140,0,14820,0,160 %N A361853 Number of integer partitions of n such that (length) * (maximum) = 2n. %C A361853 Also partitions satisfying (maximum) = 2*(mean). %C A361853 These are partitions whose diagram has the same size as its complement (see example). %e A361853 The a(6) = 2 through a(12) = 10 partitions: %e A361853 (411) . (4211) (621) (5221) . (822) %e A361853 (3111) (321111) (5311) (831) %e A361853 (42211) (6222) %e A361853 (43111) (6321) %e A361853 (6411) %e A361853 (422211) %e A361853 (432111) %e A361853 (441111) %e A361853 (32211111) %e A361853 (33111111) %e A361853 The partition y = (6,4,1,1) has diagram: %e A361853 o o o o o o %e A361853 o o o o . . %e A361853 o . . . . . %e A361853 o . . . . . %e A361853 Since the partition and its complement (shown in dots) have the same size, y is counted under a(12). %t A361853 Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#==2n&]],{n,30}] %Y A361853 For minimum instead of mean we have A118096. %Y A361853 For length instead of mean we have A237753. %Y A361853 For median instead of mean we have A361849, ranks A361856. %Y A361853 This is the equal case of A361851, unequal case A361852. %Y A361853 The strict case is A361854. %Y A361853 These partitions have ranks A361855. %Y A361853 This is the equal case of A361906, unequal case A361907. %Y A361853 A000041 counts integer partitions, strict A000009. %Y A361853 A008284 counts partitions by length, A058398 by mean. %Y A361853 A051293 counts subsets with integer mean. %Y A361853 A067538 counts partitions with integer mean. %Y A361853 A268192 counts partitions by complement size, ranks A326844. %Y A361853 Cf. A111907, A116608, A188814, A237755, A237824, A237984, A240219, A326849, A327482, A349156, A359894. %K A361853 nonn %O A361853 1,6 %A A361853 _Gus Wiseman_, Mar 29 2023