This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361854 #7 Mar 31 2023 05:01:14 %S A361854 0,0,0,0,0,0,0,0,1,0,0,2,0,1,2,2,0,5,0,6,3,5,0,11,6,8,7,10,0,36,0,14, %T A361854 16,16,29,43,0,21,36,69,0,97,0,35,138,33,0,150,61,137,134,74,0,231, %U A361854 134,265,229,56,0,650,0,65,749,267,247,533,0,405,565 %N A361854 Number of strict integer partitions of n such that (length) * (maximum) = 2n. %C A361854 Also strict partitions satisfying (maximum) = 2*(mean). %C A361854 These are strict partitions where both the diagram and its complement (see example) have size n. %e A361854 The a(n) strict partitions for selected n (A..E = 10..14): %e A361854 n=9: n=12: n=14: n=15: n=16: n=18: n=20: n=21: n=22: %e A361854 -------------------------------------------------------------- %e A361854 621 831 7421 A32 8431 C42 A532 E43 B542 %e A361854 6321 A41 8521 C51 A541 E52 B632 %e A361854 9432 A631 E61 B641 %e A361854 9531 A721 B731 %e A361854 9621 85421 B821 %e A361854 86321 %e A361854 The a(20) = 6 strict partitions are: (10,7,2,1), (10,6,3,1), (10,5,4,1), (10,5,3,2), (8,6,3,2,1), (8,5,4,2,1). %e A361854 The strict partition y = (8,5,4,2,1) has diagram: %e A361854 o o o o o o o o %e A361854 o o o o o . . . %e A361854 o o o o . . . . %e A361854 o o . . . . . . %e A361854 o . . . . . . . %e A361854 Since the partition and its complement (shown in dots) have the same size, y is counted under a(20). %t A361854 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[#]*Max@@#==2n&]],{n,30}] %Y A361854 For minimum instead of mean we have A241035, non-strict A118096. %Y A361854 For length instead of mean we have A241087, non-strict A237753. %Y A361854 For median instead of mean we have A361850, non-strict A361849. %Y A361854 The non-strict version is A361853. %Y A361854 These partitions have ranks A361855 /\ A005117. %Y A361854 A000041 counts integer partitions, strict A000009. %Y A361854 A008284 counts partitions by length, A058398 by mean. %Y A361854 A008289 counts strict partitions by length. %Y A361854 A102627 counts strict partitions with integer mean, non-strict A067538. %Y A361854 A116608 counts partitions by number of distinct parts. %Y A361854 A268192 counts partitions by complement size, ranks A326844. %Y A361854 Cf. A111907, A237755, A240850, A326849 A359897, A360068, A360071, A360243, A361848, A361851, A361852, A361906. %K A361854 nonn %O A361854 1,12 %A A361854 _Gus Wiseman_, Mar 29 2023