This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361855 #6 Apr 01 2023 22:03:27 %S A361855 28,40,78,84,171,190,198,220,240,252,280,351,364,390,406,435,714,748, %T A361855 756,765,777,784,814,840,850,925,988,1118,1197,1254,1330,1352,1419, %U A361855 1425,1440,1505,1564,1600,1638,1716,1755,1794,1802,1820,1950,2067,2204,2254 %N A361855 Numbers > 1 whose prime indices satisfy (maximum) * (length) = 2*(sum). %C A361855 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A361855 Also positive integers whose prime indices satisfy (maximum) = 2*(mean). %C A361855 Also Heinz numbers of partitions of the same size as their complement (see example). %F A361855 A061395(a(n)) * A001222(a(n)) = 2*A056239(a(n)). %e A361855 The terms together with their prime indices begin: %e A361855 28: {1,1,4} %e A361855 40: {1,1,1,3} %e A361855 78: {1,2,6} %e A361855 84: {1,1,2,4} %e A361855 171: {2,2,8} %e A361855 190: {1,3,8} %e A361855 198: {1,2,2,5} %e A361855 220: {1,1,3,5} %e A361855 240: {1,1,1,1,2,3} %e A361855 252: {1,1,2,2,4} %e A361855 280: {1,1,1,3,4} %e A361855 The prime indices of 84 are {1,1,2,4}, with maximum 4, length 4, and sum 8, and 4*4 = 2*8, so 84 is in the sequence. %e A361855 The prime indices of 120 are {1,1,1,2,3}, with maximum 3, length 5, and sum 8, and 3*5 != 2*8, so 120 is not in the sequence. %e A361855 The prime indices of 252 are {1,1,2,2,4}, with maximum 4, length 5, and sum 10, and 4*5 = 2*10, so 252 is in the sequence. %e A361855 The partition (5,2,2,1) with Heinz number 198 has diagram: %e A361855 o o o o o %e A361855 o o . . . %e A361855 o o . . . %e A361855 o . . . . %e A361855 Since the partition and its complement (shown in dots) both have size 10, 198 is in the sequence. %t A361855 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A361855 Select[Range[2,100],Max@@prix[#]*PrimeOmega[#]==2*Total[prix[#]]&] %Y A361855 These partitions are counted by A361853, strict A361854. %Y A361855 For median instead of mean we have A361856, counted by A361849. %Y A361855 For minimum instead of mean we have A361908, counted by A118096. %Y A361855 For length instead of mean we have A361909, counted by A237753. %Y A361855 A001222 (bigomega) counts prime factors, distinct A001221 (omega). %Y A361855 A061395 gives greatest prime index. %Y A361855 A112798 lists prime indices, sum A056239. %Y A361855 A326567/A326568 gives mean of prime indices. %Y A361855 Cf. A067801, A237824, A316413, A324521, A326844, A361205, A361851, A361906. %K A361855 nonn %O A361855 1,1 %A A361855 _Gus Wiseman_, Mar 29 2023