This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361857 #5 Apr 03 2023 09:16:59 %S A361857 0,0,0,0,1,2,3,7,11,16,25,37,52,74,101,138,185,248,325,428,554,713, %T A361857 914,1167,1476,1865,2336,2922,3633,4508,5562,6854,8405,10284,12536, %U A361857 15253,18489,22376,26994,32507,39038,46802,55963,66817,79582,94643,112315 %N A361857 Number of integer partitions of n such that the maximum is greater than twice the median. %C A361857 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A361857 The a(5) = 1 through a(10) = 16 partitions: %e A361857 (311) (411) (511) (521) (522) (622) %e A361857 (3111) (4111) (611) (621) (721) %e A361857 (31111) (4211) (711) (811) %e A361857 (5111) (5211) (5221) %e A361857 (32111) (6111) (5311) %e A361857 (41111) (33111) (6211) %e A361857 (311111) (42111) (7111) %e A361857 (51111) (43111) %e A361857 (321111) (52111) %e A361857 (411111) (61111) %e A361857 (3111111) (331111) %e A361857 (421111) %e A361857 (511111) %e A361857 (3211111) %e A361857 (4111111) %e A361857 (31111111) %e A361857 The partition y = (5,2,2,1) has maximum 5 and median 2, and 5 > 2*2, so y is counted under a(10). %t A361857 Table[Length[Select[IntegerPartitions[n],Max@@#>2*Median[#]&]],{n,30}] %Y A361857 For length instead of median we have A237751. %Y A361857 For minimum instead of median we have A237820. %Y A361857 The complement is counted by A361848. %Y A361857 The equal version is A361849, ranks A361856. %Y A361857 Reversing the inequality gives A361858. %Y A361857 Allowing equality gives A361859, ranks A361868. %Y A361857 These partitions have ranks A361867. %Y A361857 For mean instead of median we have A361907. %Y A361857 A000041 counts integer partitions, strict A000009. %Y A361857 A000975 counts subsets with integer median. %Y A361857 A325347 counts partitions with integer median, complement A307683. %Y A361857 A359893 and A359901 count partitions by median. %Y A361857 A360005 gives twice median of prime indices, distinct A360457. %Y A361857 Cf. A008284, A013580, A027193, A061395, A237755, A237824, A240219, A361394, A361851, A361860. %K A361857 nonn %O A361857 1,6 %A A361857 _Gus Wiseman_, Apr 02 2023