This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361858 #5 Apr 03 2023 09:16:53 %S A361858 1,2,3,4,5,8,8,12,15,19,22,31,34,45,55,67,78,100,115,144,170,203,238, %T A361858 291,337,403,473,560,650,772,889,1046,1213,1414,1635,1906,2186,2533, %U A361858 2913,3361,3847,4433,5060,5808,6628,7572,8615,9835,11158,12698,14394 %N A361858 Number of integer partitions of n such that the maximum is less than twice the median. %C A361858 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A361858 The a(1) = 1 through a(8) = 12 partitions: %e A361858 (1) (2) (3) (4) (5) (6) (7) (8) %e A361858 (11) (21) (22) (32) (33) (43) (44) %e A361858 (111) (31) (41) (42) (52) (53) %e A361858 (1111) (221) (51) (61) (62) %e A361858 (11111) (222) (322) (71) %e A361858 (321) (331) (332) %e A361858 (2211) (2221) (431) %e A361858 (111111) (1111111) (2222) %e A361858 (3221) %e A361858 (3311) %e A361858 (22211) %e A361858 (11111111) %e A361858 The partition y = (3,2,2,1) has maximum 3 and median 2, and 3 < 2*2, so y is counted under a(8). %t A361858 Table[Length[Select[IntegerPartitions[n],Max@@#<2*Median[#]&]],{n,30}] %Y A361858 For minimum instead of median we have A053263. %Y A361858 For length instead of median we have A237754. %Y A361858 Allowing equality gives A361848, strict A361850. %Y A361858 The equal version is A361849, ranks A361856. %Y A361858 For mean instead of median we have A361852. %Y A361858 Reversing the inequality gives A361857, ranks A361867. %Y A361858 The complement is counted by A361859, ranks A361868. %Y A361858 A000041 counts integer partitions, strict A000009. %Y A361858 A000975 counts subsets with integer median. %Y A361858 A325347 counts partitions with integer median, complement A307683. %Y A361858 A359893 and A359901 count partitions by median. %Y A361858 A360005 gives twice median of prime indices, distinct A360457. %Y A361858 Cf. A008284, A027193, A237751, A237755, A237820, A237824, A240219, A361394, A361851, A361860, A361907. %K A361858 nonn %O A361858 1,2 %A A361858 _Gus Wiseman_, Apr 02 2023