This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361859 #5 Apr 03 2023 09:17:07 %S A361859 0,0,0,1,2,3,7,10,15,23,34,46,67,90,121,164,219,285,375,483,622,799, %T A361859 1017,1284,1621,2033,2537,3158,3915,4832,5953,7303,8930,10896,13248, %U A361859 16071,19451,23482,28272,33977,40736,48741,58201,69367,82506,97986,116139 %N A361859 Number of integer partitions of n such that the maximum is greater than or equal to twice the median. %C A361859 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A361859 The a(4) = 1 through a(9) = 15 partitions: %e A361859 (211) (311) (411) (421) (422) (522) %e A361859 (2111) (3111) (511) (521) (621) %e A361859 (21111) (3211) (611) (711) %e A361859 (4111) (4211) (4221) %e A361859 (22111) (5111) (4311) %e A361859 (31111) (32111) (5211) %e A361859 (211111) (41111) (6111) %e A361859 (221111) (33111) %e A361859 (311111) (42111) %e A361859 (2111111) (51111) %e A361859 (321111) %e A361859 (411111) %e A361859 (2211111) %e A361859 (3111111) %e A361859 (21111111) %e A361859 The partition y = (5,2,2,1) has maximum 5 and median 2, and 5 >= 2*2, so y is counted under a(10). %t A361859 Table[Length[Select[IntegerPartitions[n],Max@@#>=2*Median[#]&]],{n,30}] %Y A361859 For length instead of median we have A237752. %Y A361859 For minimum instead of median we have A237821. %Y A361859 Reversing the inequality gives A361848. %Y A361859 The equal case is A361849, ranks A361856. %Y A361859 The unequal case is A361857, ranks A361867. %Y A361859 The complement is counted by A361858. %Y A361859 These partitions have ranks A361868. %Y A361859 For mean instead of median we have A361906. %Y A361859 A000041 counts integer partitions, strict A000009. %Y A361859 A000975 counts subsets with integer median. %Y A361859 A325347 counts partitions with integer median, complement A307683. %Y A361859 A359893 and A359901 count partitions by median. %Y A361859 A360005 gives twice median of prime indices, distinct A360457. %Y A361859 Cf. A008284, A027193, A067538, A237755, A237820, A237824, A240219, A359907, A361851, A361860, A361907. %K A361859 nonn %O A361859 1,5 %A A361859 _Gus Wiseman_, Apr 02 2023