This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361860 #7 Apr 03 2023 09:16:27 %S A361860 1,2,2,4,4,7,8,12,15,21,25,36,44,58,72,95,117,150,185,235,289,362,441, %T A361860 550,670,824,1000,1223,1476,1795,2159,2609,3126,3758,4485,5369,6388, %U A361860 7609,9021,10709,12654,14966,17632,20782,24414,28684,33601,39364,45996 %N A361860 Number of integer partitions of n whose median part is the smallest. %C A361860 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A361860 The a(1) = 1 through a(8) = 12 partitions: %e A361860 (1) (2) (3) (4) (5) (6) (7) (8) %e A361860 (11) (111) (22) (311) (33) (322) (44) %e A361860 (211) (2111) (222) (511) (422) %e A361860 (1111) (11111) (411) (4111) (611) %e A361860 (3111) (22111) (2222) %e A361860 (21111) (31111) (5111) %e A361860 (111111) (211111) (32111) %e A361860 (1111111) (41111) %e A361860 (221111) %e A361860 (311111) %e A361860 (2111111) %e A361860 (11111111) %t A361860 Table[Length[Select[IntegerPartitions[n],Min@@#==Median[#]&]],{n,30}] %Y A361860 For mean instead of median we have A000005. %Y A361860 For length instead of median we have A006141. %Y A361860 For maximum instead of median we have A053263. %Y A361860 For half-median we have A361861. %Y A361860 A000041 counts integer partitions, strict A000009. %Y A361860 A008284 counts partitions by length, A058398 by mean. %Y A361860 A325347 counts partitions with integer median, complement A307683. %Y A361860 A359893 and A359901 count partitions by median, odd-length A359902. %Y A361860 A360005 gives twice median of prime indices, distinct A360457. %Y A361860 Cf. A027193, A053263, A067659, A111907, A116608, A118096, A237753, A240219, A359907, A361848, A361849. %K A361860 nonn %O A361860 1,2 %A A361860 _Gus Wiseman_, Apr 02 2023