cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361860 Number of integer partitions of n whose median part is the smallest.

This page as a plain text file.
%I A361860 #7 Apr 03 2023 09:16:27
%S A361860 1,2,2,4,4,7,8,12,15,21,25,36,44,58,72,95,117,150,185,235,289,362,441,
%T A361860 550,670,824,1000,1223,1476,1795,2159,2609,3126,3758,4485,5369,6388,
%U A361860 7609,9021,10709,12654,14966,17632,20782,24414,28684,33601,39364,45996
%N A361860 Number of integer partitions of n whose median part is the smallest.
%C A361860 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
%e A361860 The a(1) = 1 through a(8) = 12 partitions:
%e A361860   (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
%e A361860        (11)  (111)  (22)    (311)    (33)      (322)      (44)
%e A361860                     (211)   (2111)   (222)     (511)      (422)
%e A361860                     (1111)  (11111)  (411)     (4111)     (611)
%e A361860                                      (3111)    (22111)    (2222)
%e A361860                                      (21111)   (31111)    (5111)
%e A361860                                      (111111)  (211111)   (32111)
%e A361860                                                (1111111)  (41111)
%e A361860                                                           (221111)
%e A361860                                                           (311111)
%e A361860                                                           (2111111)
%e A361860                                                           (11111111)
%t A361860 Table[Length[Select[IntegerPartitions[n],Min@@#==Median[#]&]],{n,30}]
%Y A361860 For mean instead of median we have A000005.
%Y A361860 For length instead of median we have A006141.
%Y A361860 For maximum instead of median we have A053263.
%Y A361860 For half-median we have A361861.
%Y A361860 A000041 counts integer partitions, strict A000009.
%Y A361860 A008284 counts partitions by length, A058398 by mean.
%Y A361860 A325347 counts partitions with integer median, complement A307683.
%Y A361860 A359893 and A359901 count partitions by median, odd-length A359902.
%Y A361860 A360005 gives twice median of prime indices, distinct A360457.
%Y A361860 Cf. A027193, A053263, A067659, A111907, A116608, A118096, A237753, A240219, A359907, A361848, A361849.
%K A361860 nonn
%O A361860 1,2
%A A361860 _Gus Wiseman_, Apr 02 2023