This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361861 #6 Apr 03 2023 09:15:58 %S A361861 0,0,0,1,1,1,2,5,5,8,11,16,20,28,38,53,67,87,111,146,183,236,297,379, %T A361861 471,591,729,909,1116,1376,1682,2065,2507,3055,3699,4482,5395,6501, %U A361861 7790,9345,11153,13316,15839,18844,22333,26466,31266,36924,43478,51177 %N A361861 Number of integer partitions of n where the median is twice the minimum. %C A361861 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A361861 The a(4) = 1 through a(11) = 11 partitions: %e A361861 (31) (221) (321) (421) (62) (621) (442) (542) %e A361861 (2221) (521) (4221) (721) (821) %e A361861 (3221) (4311) (5221) (6221) %e A361861 (3311) (22221) (5311) (6311) %e A361861 (22211) (32211) (32221) (33221) %e A361861 (33211) (42221) %e A361861 (42211) (43211) %e A361861 (222211) (52211) %e A361861 (222221) %e A361861 (322211) %e A361861 (2222111) %e A361861 The partition (3,2,2,2,1,1) has median 2 and minimum 1, so is counted under a(11). %e A361861 The partition (5,4,2) has median 4 and minimum 2, so is counted under a(11). %t A361861 Table[Length[Select[IntegerPartitions[n],2*Min@@#==Median[#]&]],{n,30}] %Y A361861 For maximum instead of median we have A118096. %Y A361861 For length instead of median we have A237757, without the coefficient A006141. %Y A361861 With minimum instead of twice minimum we have A361860. %Y A361861 A000041 counts integer partitions, strict A000009. %Y A361861 A008284 counts partitions by length, A058398 by mean. %Y A361861 A325347 counts partitions with integer median, complement A307683. %Y A361861 A359893 and A359901 count partitions by median, odd-length A359902. %Y A361861 A360005 gives twice median of prime indices, distinct A360457. %Y A361861 Cf. A027193, A039900, A053263, A067659, A111907, A116608, A237753, A237755, A237824, A361848, A361853. %K A361861 nonn %O A361861 1,7 %A A361861 _Gus Wiseman_, Apr 02 2023