This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361864 #5 Apr 04 2023 07:41:38 %S A361864 1,0,3,6,30,96,461,2000,10727,57092,342348 %N A361864 Number of set partitions of {1..n} whose block-medians have integer median. %C A361864 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A361864 The a(1) = 1 through a(4) = 6 set partitions: %e A361864 {{1}} . {{123}} {{1}{234}} %e A361864 {{13}{2}} {{123}{4}} %e A361864 {{1}{2}{3}} {{1}{2}{34}} %e A361864 {{12}{3}{4}} %e A361864 {{1}{24}{3}} %e A361864 {{13}{2}{4}} %e A361864 The set partition {{1,2},{3},{4}} has block-medians {3/2,3,4}, with median 3, so is counted under a(4). %t A361864 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A361864 Table[Length[Select[sps[Range[n]],IntegerQ[Median[Median/@#]]&]],{n,6}] %Y A361864 For mean instead of median we have A361865. %Y A361864 For sum instead of outer median we have A361911, means A361866. %Y A361864 A000110 counts set partitions. %Y A361864 A000975 counts subsets with integer median, mean A327475. %Y A361864 A013580 appears to count subsets by median, A327481 by mean. %Y A361864 A308037 counts set partitions with integer average block-size. %Y A361864 A325347 counts partitions w/ integer median, complement A307683. %Y A361864 A360005 gives twice median of prime indices, distinct A360457. %Y A361864 Cf. A007837, A035470, A038041, A275714, A275780, A326512, A326513. %Y A361864 Cf. A027193, A067659, A079309, A231147, A359893, A359907, A361801. %K A361864 nonn,more %O A361864 1,3 %A A361864 _Gus Wiseman_, Apr 04 2023