This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361866 #11 May 12 2025 19:06:48 %S A361866 1,1,1,3,8,22,75,267,1119,4965,22694,117090,670621,3866503,24113829, %T A361866 161085223,1120025702,8121648620,62083083115,492273775141, %U A361866 4074919882483 %N A361866 Number of set partitions of {1..n} with block-means summing to an integer. %e A361866 The a(1) = 1 through a(4) = 8 set partitions: %e A361866 {{1}} {{1}{2}} {{123}} {{1}{234}} %e A361866 {{13}{2}} {{12}{34}} %e A361866 {{1}{2}{3}} {{123}{4}} %e A361866 {{13}{24}} %e A361866 {{14}{23}} %e A361866 {{1}{24}{3}} %e A361866 {{13}{2}{4}} %e A361866 {{1}{2}{3}{4}} %e A361866 The set partition y = {{1,2},{3,4}} has block-means {3/2,7/2}, with sum 5, so y is counted under a(4). %t A361866 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A361866 Table[Length[Select[sps[Range[n]],IntegerQ[Total[Mean/@#]]&]],{n,6}] %Y A361866 For mean instead of sum we have A361865, for median A361864. %Y A361866 For median instead of mean we have A361911. %Y A361866 A000110 counts set partitions. %Y A361866 A067538 counts partitions with integer mean, ranks A326836, strict A102627. %Y A361866 A308037 counts set partitions with integer mean block-size. %Y A361866 A327475 counts subsets with integer mean, median A000975. %Y A361866 A327481 counts subsets by mean, median A013580. %Y A361866 Cf. A007837, A035470, A038041, A275714, A275780, A326512, A326513. %Y A361866 Cf. A067659, A326515, A326516, A326521. %K A361866 nonn,more %O A361866 0,4 %A A361866 _Gus Wiseman_, Apr 04 2023 %E A361866 a(14)-a(20) from _Christian Sievers_, May 12 2025