cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361867 Positive integers > 1 whose prime indices satisfy (maximum) > 2*(median).

Original entry on oeis.org

20, 28, 40, 44, 52, 56, 66, 68, 76, 78, 80, 84, 88, 92, 99, 102, 104, 112, 114, 116, 117, 120, 124, 132, 136, 138, 148, 152, 153, 156, 160, 164, 168, 170, 171, 172, 174, 176, 184, 186, 188, 190, 198, 200, 204, 207, 208, 212, 220, 222, 224, 228, 230, 232, 234
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 84 are {1,1,2,4}, with maximum 4 and median 3/2, and 4 > 2*(3/2), so 84 is in the sequence.
The terms together with their prime indices begin:
   20: {1,1,3}
   28: {1,1,4}
   40: {1,1,1,3}
   44: {1,1,5}
   52: {1,1,6}
   56: {1,1,1,4}
   66: {1,2,5}
   68: {1,1,7}
   76: {1,1,8}
   78: {1,2,6}
   80: {1,1,1,1,3}
   84: {1,1,2,4}
   88: {1,1,1,5}
   92: {1,1,9}
   99: {2,2,5}
		

Crossrefs

The LHS is A061395 (greatest prime index).
The RHS is A360005 (twice median), distinct A360457.
The equal version is A361856, counted by A361849.
These partitions are counted by A361857, reverse A361858.
Including the equal case gives A361868, counted by A361859.
For mean instead of median we have A361907.
A000975 counts subsets with integer median.
A001222 counts prime factors, distinct A001221.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100], Max@@prix[#]>2*Median[prix[#]]&]