This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361869 #50 May 30 2023 07:45:30 %S A361869 0,1,2,2,0,2,3,2,0,4,3,2,0,2,5,1,0,2,0,2,0,4,3,2,0,4,2,0,0,2,0,2,0,6, %T A361869 3,1,0,2,5,1,0,2,3,2,0,2,5,2,0,6,3,1,0,2,0,1,0,4,3,2,0,2,7,2,0,1,3,2, %U A361869 0,3,3,2,0,2,2,2,0,1,3,2,0,0,3,2,0,4,3,1,0,2,0,1,0,4,7,1,0,2,2,3 %N A361869 Let x_0, x_1, x_2, ... be the iterations of the arithmetic derivative A003415 starting with x_0 = n. a(n) is the greatest k such that x_0 > x_1 > ... > x_k. %C A361869 a(n) is the number of iterations of A003415 starting at n until the sequence of iterates stops decreasing. %C A361869 a(n) = 0 if and only if A003415(n) >= n. %C A361869 First differs from A099307 at n=15, where a(15) = 1 while A099307(15) = 0. %H A361869 Robert Israel, <a href="/A361869/b361869.txt">Table of n, a(n) for n = 0..10000</a> %e A361869 a(5) = 2 because x_0 = 5 > x_1 = A003415(5) = 1 > x_2 = A003415(1) = 0, but x_3 = A003415(0) = 0. %e A361869 a(6) = 3 because x_0 = 6 > x_1 = A003415(6) = 5 > ... > x_3 = 0 but x_4 = 0. %p A361869 ader:= proc(n) local t; %p A361869 n * add(t[2]/t[1], t = ifactors(n)[2]) %p A361869 end proc: %p A361869 f:= proc(n) option remember; local t; %p A361869 t:= ader(n); %p A361869 if t < n then procname(t)+1 else 0 fi %p A361869 end proc: %p A361869 map(f, [$0..1000]); %Y A361869 Cf. A003415, A099307. %K A361869 nonn %O A361869 0,3 %A A361869 _Robert Israel_, May 28 2023