cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361872 Number of primitive practical numbers (PPNs)(A267124) between successive primorial numbers (A002110) where the PPNs q are in the range A002110(n-1) < q <= A002110(n).

This page as a plain text file.
%I A361872 #13 Jun 21 2023 06:41:12
%S A361872 1,1,3,8,108,1107,15788,252603,5121763
%N A361872 Number of primitive practical numbers (PPNs)(A267124) between successive primorial numbers (A002110) where the PPNs q are in the range A002110(n-1) < q <= A002110(n).
%C A361872 The sequence of primorial numbers is a subset of the sequence of PPNs. Note that the sequence A002110 has an offset of 0 and A002110(0) = 1.
%H A361872 Wikipedia, <a href="http://en.wikipedia.org/wiki/Practical_number">Practical number</a> and <a href="http://en.wikipedia.org/wiki/Primorial">Primorial</a>
%e A361872 a(4) = 8, because between successive primorials 30 and 210 (that includes 210) is the sequence {42, 66, 78, 88, 104, 140, 204, 210} of PPNs. It contains 8 members.
%t A361872 f[p_, e_] := (p^(e + 1) - 1)/(p - 1);
%t A361872 pracQ[fct_] := (ind=Position[fct[[;; , 1]]/(1+FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)])=={};
%t A361872 pracTestQ[fct_, k_] := Module[{f=fct}, f[[k, 2]]-= 1; pracQ[f]];
%t A361872 primPracQ[n_] := Module[{fct=FactorInteger[n]}, pracQ[fct]&&AllTrue[Range@Length[fct], fct[[#, 2]]==1||!pracTestQ[fct, #] &]];
%t A361872 pri[n_] := Module[{m}, If[n==1, 1, Product[Prime[m], {m, 1, n-1}]]];
%t A361872 plst=Join[{1}, Select[Range[2, 10^9, 2], primPracQ]]; pasc=<||>;
%t A361872 Do[AppendTo[pasc, <|plst[[n]]->n|>], {n, 1, Length@plst}]; Table[pasc[pri[n+1]]-pasc[pri[n]], {n, 1, 9}]
%o A361872 (PARI)
%o A361872 f(n) = factorback(primes(n)); \\ A002110
%o A361872 a(n) = sum(k=f(n-1)+1, f(n), is_A267124(k)); \\ _Michel Marcus_, Mar 28 2023
%Y A361872 Cf. A002110, A267124.
%K A361872 nonn,more
%O A361872 1,3
%A A361872 _Frank M Jackson_, Mar 27 2023