This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361893 #10 Jul 30 2023 17:45:42 %S A361893 1,0,1,0,2,2,0,3,12,6,0,4,36,72,24,0,5,80,360,480,120,0,6,150,1200, %T A361893 3600,3600,720,0,7,252,3150,16800,37800,30240,5040,0,8,392,7056,58800, %U A361893 235200,423360,282240,40320,0,9,576,14112,169344,1058400,3386880,5080320,2903040,362880 %N A361893 Triangle read by rows. T(n, k) = n! * binomial(n - 1, k - 1) / (n - k)!. %F A361893 T(n, k) = k! * binomial(n, k) * binomial(n - 1, k - 1). %F A361893 T(n + 1, k + 1) / (n + 1) = A144084(n, k) = (-1)^(n - k)*A021010(n, k). %F A361893 T(n, k) = [x^k] n! * ([y^n](1 + (x*y / (1 - x*y)) * exp(y / (1 - x*y)))). %e A361893 Triangle T(n, k) starts: %e A361893 [0] 1; %e A361893 [1] 0, 1; %e A361893 [2] 0, 2, 2; %e A361893 [3] 0, 3, 12, 6; %e A361893 [4] 0, 4, 36, 72, 24; %e A361893 [5] 0, 5, 80, 360, 480, 120; %e A361893 [6] 0, 6, 150, 1200, 3600, 3600, 720; %e A361893 [7] 0, 7, 252, 3150, 16800, 37800, 30240, 5040; %e A361893 [8] 0, 8, 392, 7056, 58800, 235200, 423360, 282240, 40320; %e A361893 [9] 0, 9, 576, 14112, 169344, 1058400, 3386880, 5080320, 2903040, 362880; %p A361893 A361893 := (n, k) -> n!*binomial(n - 1, k - 1)/(n - k)!: %p A361893 seq(seq(A361893(n,k), k = 0..n), n = 0..9); %p A361893 # Using the egf.: %p A361893 egf := 1 + (x*y/(1 - x*y))*exp(y/(1 - x*y)): ser := series(egf, y, 10): %p A361893 poly := n -> convert(n!*expand(coeff(ser, y, n)), polynom): %p A361893 row := n -> seq(coeff(poly(n), x, k), k = 0..n): seq(print(row(n)), n = 0..6); %Y A361893 Cf. A052852 (row sums), A317365 (alternating row sums), A000142 (main diagonal), A187535 (central column), A062119, A055303, A011379. %Y A361893 Cf. A144084, A021010. %K A361893 nonn,tabl %O A361893 0,5 %A A361893 _Peter Luschny_, Mar 28 2023