This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361894 #9 Mar 31 2023 07:00:24 %S A361894 1,2,1,3,2,1,4,6,2,1,5,16,6,2,1,6,35,20,6,2,1,7,66,65,20,6,2,1,8,112, %T A361894 186,70,20,6,2,1,9,176,462,246,70,20,6,2,1,10,261,1016,812,252,70,20, %U A361894 6,2,1,11,370,2025,2416,917,252,70,20,6,2,1,12,506,3730,6435,3256,924,252,70,20,6,2,1 %N A361894 Triangle read by rows. T(n, k) is the number of Fibonacci meanders with a central angle of 360/m degrees that make m*k left turns and whose length is m*n, where m = 2. %C A361894 For an overview of the terms used see A361574. A201631 gives the row sums of this triangle. %C A361894 The corresponding sequence counting meanders without the requirement of being Fibonacci is A103371 (for which in turn A103327 is a termwise majorant counting permutations of the same type). %C A361894 The diagonals, starting from the main diagonal, apparently converge to A000984. %H A361894 Jean-Luc Baril, Sergey Kirgizov, Rémi Maréchal, and Vincent Vajnovszki, <a href="https://arxiv.org/abs/2202.06893">Enumeration of Dyck paths with air pockets</a>, arXiv:2202.06893 [cs.DM], 2022-2023. %H A361894 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/FibonacciMeanders">Fibonacci meanders</a>. %e A361894 Triangle T(n, k) starts: %e A361894 [ 1] 1; %e A361894 [ 2] 2, 1; %e A361894 [ 3] 3, 2, 1; %e A361894 [ 4] 4, 6, 2, 1; %e A361894 [ 5] 5, 16, 6, 2, 1; %e A361894 [ 6] 6, 35, 20, 6, 2, 1; %e A361894 [ 7] 7, 66, 65, 20, 6, 2, 1; %e A361894 [ 8] 8, 112, 186, 70, 20, 6, 2, 1; %e A361894 [ 9] 9, 176, 462, 246, 70, 20, 6, 2, 1; %e A361894 [10] 10, 261, 1016, 812, 252, 70, 20, 6, 2, 1; %e A361894 [11] 11, 370, 2025, 2416, 917, 252, 70, 20, 6, 2, 1; %e A361894 [12] 12, 506, 3730, 6435, 3256, 924, 252, 70, 20, 6, 2, 1. %e A361894 . %e A361894 T(4, k) counts Fibonacci meanders with central angle 180 degrees and length 8 that make k left turns. Written as binary strings (L = 1, R = 0): %e A361894 k = 1: 11000000, 10010000, 10000100, 10000001; %e A361894 k = 2: 11110000, 11100100, 11100001, 11010010, 11001001, 10100101; %e A361894 k = 3: 11111100, 11111001; %e A361894 k = 4: 11111111. %o A361894 (SageMath) # using function 'FibonacciMeandersByLeftTurns' from A361681. %o A361894 for n in range(1, 12): %o A361894 print(FibonacciMeandersByLeftTurns(2, n)) %Y A361894 Cf. A201631 (row sums), A361681 (m=3), A132812, A361574, A103371, A000984. %K A361894 nonn,tabl %O A361894 1,2 %A A361894 _Peter Luschny_, Mar 31 2023