cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361894 Triangle read by rows. T(n, k) is the number of Fibonacci meanders with a central angle of 360/m degrees that make m*k left turns and whose length is m*n, where m = 2.

This page as a plain text file.
%I A361894 #9 Mar 31 2023 07:00:24
%S A361894 1,2,1,3,2,1,4,6,2,1,5,16,6,2,1,6,35,20,6,2,1,7,66,65,20,6,2,1,8,112,
%T A361894 186,70,20,6,2,1,9,176,462,246,70,20,6,2,1,10,261,1016,812,252,70,20,
%U A361894 6,2,1,11,370,2025,2416,917,252,70,20,6,2,1,12,506,3730,6435,3256,924,252,70,20,6,2,1
%N A361894 Triangle read by rows. T(n, k) is the number of Fibonacci meanders with a central angle of 360/m degrees that make m*k left turns and whose length is m*n, where m = 2.
%C A361894 For an overview of the terms used see A361574. A201631 gives the row sums of this triangle.
%C A361894 The corresponding sequence counting meanders without the requirement of being Fibonacci is A103371 (for which in turn A103327 is a termwise majorant counting permutations of the same type).
%C A361894 The diagonals, starting from the main diagonal, apparently converge to A000984.
%H A361894 Jean-Luc Baril, Sergey Kirgizov, Rémi Maréchal, and Vincent Vajnovszki, <a href="https://arxiv.org/abs/2202.06893">Enumeration of Dyck paths with air pockets</a>, arXiv:2202.06893 [cs.DM], 2022-2023.
%H A361894 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/FibonacciMeanders">Fibonacci meanders</a>.
%e A361894 Triangle T(n, k) starts:
%e A361894   [ 1]  1;
%e A361894   [ 2]  2,   1;
%e A361894   [ 3]  3,   2,    1;
%e A361894   [ 4]  4,   6,    2,    1;
%e A361894   [ 5]  5,  16,    6,    2,    1;
%e A361894   [ 6]  6,  35,   20,    6,    2,   1;
%e A361894   [ 7]  7,  66,   65,   20,    6,   2,   1;
%e A361894   [ 8]  8, 112,  186,   70,   20,   6,   2,  1;
%e A361894   [ 9]  9, 176,  462,  246,   70,  20,   6,  2,  1;
%e A361894   [10] 10, 261, 1016,  812,  252,  70,  20,  6,  2, 1;
%e A361894   [11] 11, 370, 2025, 2416,  917, 252,  70, 20,  6, 2, 1;
%e A361894   [12] 12, 506, 3730, 6435, 3256, 924, 252, 70, 20, 6, 2, 1.
%e A361894 .
%e A361894 T(4, k) counts Fibonacci meanders with central angle 180 degrees and length 8 that make k left turns. Written as binary strings (L = 1, R = 0):
%e A361894 k = 1: 11000000, 10010000, 10000100, 10000001;
%e A361894 k = 2: 11110000, 11100100, 11100001, 11010010, 11001001, 10100101;
%e A361894 k = 3: 11111100, 11111001;
%e A361894 k = 4: 11111111.
%o A361894 (SageMath) # using function 'FibonacciMeandersByLeftTurns' from A361681.
%o A361894 for n in range(1, 12):
%o A361894     print(FibonacciMeandersByLeftTurns(2, n))
%Y A361894 Cf. A201631 (row sums), A361681 (m=3), A132812, A361574, A103371, A000984.
%K A361894 nonn,tabl
%O A361894 1,2
%A A361894 _Peter Luschny_, Mar 31 2023