cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361896 Expansion of 1/(1 - 9*x/(1 - x)^4)^(1/3).

This page as a plain text file.
%I A361896 #11 Mar 30 2023 05:16:27
%S A361896 1,3,30,300,3165,34584,386880,4400928,50692266,589584042,6910397886,
%T A361896 81507086634,966408021984,11509174498254,137584249375308,
%U A361896 1650109151463594,19847075122106145,239316542492974317,2892135259684291248,35021199836282568456,424837125616822551264
%N A361896 Expansion of 1/(1 - 9*x/(1 - x)^4)^(1/3).
%H A361896 Winston de Greef, <a href="/A361896/b361896.txt">Table of n, a(n) for n = 0..907</a>
%F A361896 a(n) = Sum_{k=0..n} (-9)^k * binomial(-1/3,k) * binomial(n+3*k-1,n-k).
%F A361896 a(0) = 1; a(n) = (3/n) * Sum_{k=0..n-1} (n+2*k) * binomial(n+2-k,3) * a(k).
%o A361896 (PARI) my(N=30, x='x+O('x^N)); Vec(1/(1-9*x/(1-x)^4)^(1/3))
%Y A361896 Cf. A004987, A361375, A361843, A361844, A361845, A361880, A361895.
%K A361896 nonn
%O A361896 0,2
%A A361896 _Seiichi Manyama_, Mar 28 2023