A361906 Number of integer partitions of n such that (length) * (maximum) >= 2*n.
0, 0, 0, 0, 0, 2, 3, 5, 9, 15, 19, 36, 43, 68, 96, 125, 171, 232, 297, 418, 529, 676, 853, 1156, 1393, 1786, 2316, 2827, 3477, 4484, 5423, 6677, 8156, 10065, 12538, 15121, 17978, 22091, 26666, 32363, 38176, 46640, 55137, 66895, 79589, 92621, 111485, 133485
Offset: 1
Keywords
Examples
The a(6) = 2 through a(10) = 15 partitions: (411) (511) (611) (621) (721) (3111) (4111) (4211) (711) (811) (31111) (5111) (5211) (5221) (41111) (6111) (5311) (311111) (42111) (6211) (51111) (7111) (321111) (42211) (411111) (43111) (3111111) (52111) (61111) (421111) (511111) (3211111) (4111111) (31111111) The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 >= 2*8, so y is counted under a(8). The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not >= 2*7, so y is not counted under a(7). The partition y = (3,2,1,1) has diagram: o o o o o . o . . o . . with complement (shown in dots) of size 5, and 5 is not >= 7, so y is not counted under a(7).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#>=2n&]],{n,30}]
Comments