This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361907 #6 Apr 01 2023 22:03:47 %S A361907 0,0,0,0,0,0,3,4,7,11,19,26,43,60,80,115,171,201,297,374,485,656,853, %T A361907 1064,1343,1758,2218,2673,3477,4218,5423,6523,7962,10017,12104,14409, %U A361907 17978,22031,26318,31453,38176,45442,55137,65775,77451,92533,111485,131057 %N A361907 Number of integer partitions of n such that (length) * (maximum) > 2*n. %C A361907 Also partitions such that (maximum) > 2*(mean). %C A361907 These are partitions whose complement (see example) has size > n. %e A361907 The a(7) = 3 through a(10) = 11 partitions: %e A361907 (511) (611) (711) (721) %e A361907 (4111) (5111) (5211) (811) %e A361907 (31111) (41111) (6111) (6211) %e A361907 (311111) (42111) (7111) %e A361907 (51111) (52111) %e A361907 (411111) (61111) %e A361907 (3111111) (421111) %e A361907 (511111) %e A361907 (3211111) %e A361907 (4111111) %e A361907 (31111111) %e A361907 The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not > 2*7, so y is not counted under a(7). %e A361907 The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 is not > 2*8, so y is not counted under a(8). %e A361907 The partition y = (5,1,1,1) has length 4 and maximum 5, and 4*5 > 2*8, so y is counted under a(8). %e A361907 The partition y = (5,2,1,1) has length 4 and maximum 5, and 4*5 > 2*9, so y is counted under a(9). %e A361907 The partition y = (3,2,1,1) has diagram: %e A361907 o o o %e A361907 o o . %e A361907 o . . %e A361907 o . . %e A361907 with complement (shown in dots) of size 5, and 5 is not > 7, so y is not counted under a(7). %t A361907 Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#>2n&]],{n,30}] %Y A361907 For length instead of mean we have A237751, reverse A237754. %Y A361907 For minimum instead of mean we have A237820, reverse A053263. %Y A361907 The complement is counted by A361851, median A361848. %Y A361907 Reversing the inequality gives A361852. %Y A361907 The equal version is A361853. %Y A361907 For median instead of mean we have A361857, reverse A361858. %Y A361907 Allowing equality gives A361906, median A361859. %Y A361907 A000041 counts integer partitions, strict A000009. %Y A361907 A008284 counts partitions by length, A058398 by mean. %Y A361907 A051293 counts subsets with integer mean. %Y A361907 A067538 counts partitions with integer mean, strict A102627, ranks A316413. %Y A361907 A116608 counts partitions by number of distinct parts. %Y A361907 A268192 counts partitions by complement size, ranks A326844. %Y A361907 Cf. A027193, A111907, A237752, A237755, A237821, A237824, A237984, A324562, A326622, A327482, A349156, A360071, A361394. %K A361907 nonn %O A361907 1,7 %A A361907 _Gus Wiseman_, Mar 29 2023