This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361908 #10 Mar 12 2025 08:15:04 %S A361908 6,12,18,21,24,36,48,54,63,65,72,96,105,108,133,144,147,162,189,192, %T A361908 216,288,315,319,324,325,384,432,441,455,481,486,525,567,576,648,715, %U A361908 731,735,768,845,864,931,945,972,1007,1029,1152,1296,1323,1403,1458,1463 %N A361908 Positive integers > 1 whose prime indices satisfy (maximum) = 2*(minimum). %C A361908 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A361908 Robert Israel, <a href="/A361908/b361908.txt">Table of n, a(n) for n = 1..10000</a> %e A361908 The terms together with their prime indices begin: %e A361908 6: {1,2} %e A361908 12: {1,1,2} %e A361908 18: {1,2,2} %e A361908 21: {2,4} %e A361908 24: {1,1,1,2} %e A361908 36: {1,1,2,2} %e A361908 48: {1,1,1,1,2} %e A361908 54: {1,2,2,2} %e A361908 63: {2,2,4} %e A361908 65: {3,6} %e A361908 72: {1,1,1,2,2} %e A361908 96: {1,1,1,1,1,2} %p A361908 filter:= proc(n) local F,b; %p A361908 if n::even then b:= padic:-ordp(n,3); %p A361908 if b = 0 then return false else return n = 2^padic:-ordp(n,2) * 3^b fi %p A361908 fi; %p A361908 F:= ifactors(n)[2][..,1]; %p A361908 nops(F) >= 2 and numtheory:-pi(max(F)) = 2*numtheory:-pi(min(F)) %p A361908 end proc: %p A361908 select(filter, [$1..2000]); # _Robert Israel_, Mar 11 2025 %t A361908 Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]==2*PrimePi[FactorInteger[#][[1,1]]]&] %Y A361908 The RHS is 2*A055396 (twice minimum). %Y A361908 The LHS is A061395 (greatest prime index). %Y A361908 Partitions of this type are counted by A118096. %Y A361908 For mean instead of minimum we have A361855, counted by A361853. %Y A361908 For median instead of minimum we have A361856, counted by A361849. %Y A361908 For length instead of minimum we have A361909, counted by A237753. %Y A361908 A001221 (omega) counts distinct prime factors. %Y A361908 A001222 (bigomega) counts prime factors with multiplicity. %Y A361908 A112798 lists prime indices, sum A056239. %Y A361908 Cf. A053263, A067801, A237820, A237821, A361858. %K A361908 nonn %O A361908 1,1 %A A361908 _Gus Wiseman_, Apr 05 2023