This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361910 #10 May 12 2025 20:18:29 %S A361910 1,2,3,7,12,47,99,430,1379,5613,21416,127303,532201,3133846,18776715, %T A361910 114275757,737859014 %N A361910 Number of set partitions of {1..n} such that the mean of the means of the blocks is (n+1)/2. %C A361910 Since (n+1)/2 is the mean of {1..n}, this sequence counts a type of "transitive" set partitions. %e A361910 The a(1) = 1 through a(5) = 12 set partitions: %e A361910 {{1}} {{12}} {{123}} {{1234}} {{12345}} %e A361910 {{1}{2}} {{13}{2}} {{12}{34}} {{1245}{3}} %e A361910 {{1}{2}{3}} {{13}{24}} {{135}{24}} %e A361910 {{14}{23}} {{15}{234}} %e A361910 {{1}{23}{4}} {{1}{234}{5}} %e A361910 {{14}{2}{3}} {{12}{3}{45}} %e A361910 {{1}{2}{3}{4}} {{135}{2}{4}} %e A361910 {{14}{25}{3}} %e A361910 {{15}{24}{3}} %e A361910 {{1}{24}{3}{5}} %e A361910 {{15}{2}{3}{4}} %e A361910 {{1}{2}{3}{4}{5}} %e A361910 The set partition {{1,3},{2,4}} has means {2,3}, with mean 5/2, so is counted under a(4). %e A361910 The set partition {{1,3,5},{2,4}} has means {3,3}, with mean 3, so is counted under a(5). %t A361910 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,___}]; %t A361910 Table[Length[Select[sps[Range[n]],Mean[Join@@#]==Mean[Mean/@#]&]],{n,8}] %Y A361910 For median instead of mean we have A361863. %Y A361910 A000110 counts set partitions. %Y A361910 A308037 counts set partitions with integer mean block-size. %Y A361910 A327475 counts subsets with integer mean, A000975 with integer median. %Y A361910 A327481 counts subsets by mean, A013580 by median. %Y A361910 A361865 counts set partitions with integer mean of means. %Y A361910 A361911 counts set partitions with integer sum of means. %Y A361910 Cf. A007837, A035470, A038041, A067538, A275714, A275780, A326512, A326513, A361864, A361866. %K A361910 nonn,more %O A361910 1,2 %A A361910 _Gus Wiseman_, Apr 14 2023 %E A361910 a(13)-a(17) from _Christian Sievers_, May 12 2025