This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361911 #11 Aug 26 2024 20:08:14 %S A361911 1,1,3,10,30,107,479,2249,11173,60144,351086,2171087,14138253, %T A361911 97097101,701820663,5303701310,41838047938,343716647215,2935346815495, %U A361911 25999729551523,238473713427285,2261375071834708,22141326012712122,223519686318676559,2323959300370456901 %N A361911 Number of set partitions of {1..n} with block-medians summing to an integer. %C A361911 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A361911 The a(1) = 1 through a(4) = 10 set partitions: %e A361911 {{1}} {{1}{2}} {{123}} {{1}{234}} %e A361911 {{13}{2}} {{12}{34}} %e A361911 {{1}{2}{3}} {{123}{4}} %e A361911 {{124}{3}} %e A361911 {{13}{24}} %e A361911 {{134}{2}} %e A361911 {{14}{23}} %e A361911 {{1}{24}{3}} %e A361911 {{13}{2}{4}} %e A361911 {{1}{2}{3}{4}} %e A361911 The set partition {{1,4},{2,3}} has medians {5/2,5/2}, with sum 5, so is counted under a(4). %t A361911 sps[{}]:={{}}; sps[set:{i_,___}] := Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,___}]; %t A361911 Table[Length[Select[sps[Range[n]], IntegerQ[Total[Median/@#]]&]],{n,10}] %Y A361911 For median instead of sum we have A361864. %Y A361911 For mean of means we have A361865. %Y A361911 For mean instead of median we have A361866. %Y A361911 A000110 counts set partitions. %Y A361911 A000975 counts subsets with integer median, mean A327475. %Y A361911 A013580 appears to count subsets by median, A327481 by mean. %Y A361911 A308037 counts set partitions with integer average block-size. %Y A361911 A325347 = partitions w/ integer median, complement A307683, strict A359907. %Y A361911 A360005 gives twice median of prime indices, distinct A360457. %Y A361911 Cf. A007837, A035470, A038041, A079309, A231147, A275714, A275780, A359893, A361801, A361910. %K A361911 nonn %O A361911 1,3 %A A361911 _Gus Wiseman_, Apr 14 2023 %E A361911 a(12)-a(25) from _Christian Sievers_, Aug 26 2024