cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361914 Primes that are repunits with three or more digits for exactly one base b >= 2.

Original entry on oeis.org

7, 13, 43, 73, 127, 157, 211, 241, 307, 421, 463, 601, 757, 1093, 1123, 1483, 1723, 2551, 2801, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 9901, 10303, 11131, 12211, 12433, 13807, 14281, 17293, 19183, 19531, 20023, 20593, 21757, 22621, 22651, 23563
Offset: 1

Views

Author

Bernard Schott, Mar 29 2023

Keywords

Comments

Brazilian primes that have exactly one Brazilian representation as a repunit.
As these primes p satisfy beta(p) = tau(p) / 2 (= 1), where beta = A220136 and tau = A000005, this sequence is a subsequence of A326380.
Equals A085104 \ {31, 8191}, since according to the Goormaghtigh conjecture (link), 31 and 8191 which are both Mersenne numbers, are the only primes which are Brazilian in two different bases.
The three following sequences realize a partition of the set of primes: A220627 (primes not Brazilian), this sequence (primes 1-Brazilian) and {31,8191} (primes 2-Brazilian).

Examples

			7 = 111_2 is a term.
13 = 111_3 is a term.
19 = 11_18 is not a term.
31 = 11111_5 = 111_5 is not a term.
127 = 1111111_2 is a term.
8191 = 1111111111111_2 = 111_90 is not a term.
		

Crossrefs

Equals A326380 \ {A326385 Union A326387}.
Subsequence of A288783.

Programs