cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361917 a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k * (k+1)^(k-1) / (k! * (n-3*k)!).

This page as a plain text file.
%I A361917 #31 Feb 16 2025 08:34:05
%S A361917 1,1,1,-5,-23,-59,961,7351,29905,-877463,-9450719,-52724429,
%T A361917 2282907001,31742360365,225092745697,-12992587010129,-221436656404319,
%U A361917 -1905297800257199,137972958868569025,2784953660339878507,28177036295775415561,-2459373614334806266859
%N A361917 a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k * (k+1)^(k-1) / (k! * (n-3*k)!).
%H A361917 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A361917 E.g.f.: exp(x - LambertW(x^3)) = LambertW(x^3)/x^3 * exp(x).
%o A361917 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(x^3))))
%Y A361917 Cf. A105785, A361916, A362523.
%K A361917 sign,easy
%O A361917 0,4
%A A361917 _Seiichi Manyama_, Apr 24 2023