cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361922 Infinitary phi-practical numbers: numbers m such that each k <= m is a subsum of a the multiset {iphi(d) : d infinitary divisor of m}, where iphi is an infinitary analog of Euler's phi function (A091732).

Original entry on oeis.org

1, 2, 3, 6, 8, 12, 15, 24, 30, 40, 42, 56, 60, 72, 84, 105, 108, 120, 132, 135, 156, 165, 168, 195, 210, 216, 240, 255, 264, 270, 280, 312, 330, 360, 378, 384, 390, 408, 420, 440, 456, 462, 480, 504, 510, 520, 540, 546, 552, 570, 600, 616, 640, 660, 672, 680, 690
Offset: 1

Views

Author

Amiram Eldar, Mar 30 2023

Keywords

Crossrefs

Similar sequences: A260653, A286906, A334901.

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@IntegerDigits[e, 2], 1]));
    iphi[1] = 1; iphi[n_] := Times @@ (Flatten@ (f @@@ FactorInteger[n]) - 1);
    idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]; idivs[1] = {1};
    iPhiPracticalQ[n_] := Module[{s = Sort@ Map[iphi, idivs[n]], ans = True}, Do[If[s[[j]] > Sum[s[[i]], {i, 1, j - 1}] + 1, ans = False; Break[]], {j, 1, Length[s]}]; ans]; Select[Range[700], iPhiPracticalQ]