A361922 Infinitary phi-practical numbers: numbers m such that each k <= m is a subsum of a the multiset {iphi(d) : d infinitary divisor of m}, where iphi is an infinitary analog of Euler's phi function (A091732).
1, 2, 3, 6, 8, 12, 15, 24, 30, 40, 42, 56, 60, 72, 84, 105, 108, 120, 132, 135, 156, 165, 168, 195, 210, 216, 240, 255, 264, 270, 280, 312, 330, 360, 378, 384, 390, 408, 420, 440, 456, 462, 480, 504, 510, 520, 540, 546, 552, 570, 600, 616, 640, 660, 672, 680, 690
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := p^(2^(-1 + Position[Reverse@IntegerDigits[e, 2], 1])); iphi[1] = 1; iphi[n_] := Times @@ (Flatten@ (f @@@ FactorInteger[n]) - 1); idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]; idivs[1] = {1}; iPhiPracticalQ[n_] := Module[{s = Sort@ Map[iphi, idivs[n]], ans = True}, Do[If[s[[j]] > Sum[s[[i]], {i, 1, j - 1}] + 1, ans = False; Break[]], {j, 1, Length[s]}]; ans]; Select[Range[700], iPhiPracticalQ]