cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361924 Numbers whose infinitary divisors have distinct values of the infinitary totient function iphi (A091732).

This page as a plain text file.
%I A361924 #13 Mar 31 2023 06:57:02
%S A361924 1,3,4,5,7,9,11,12,13,15,16,17,19,20,21,23,25,27,28,29,31,33,35,36,37,
%T A361924 39,41,43,44,45,47,48,49,51,52,53,55,57,59,60,61,63,64,65,67,68,69,71,
%U A361924 73,75,76,77,79,80,81,83,85,87,89,91,92,93,95,97,99,100,101
%N A361924 Numbers whose infinitary divisors have distinct values of the infinitary totient function iphi (A091732).
%C A361924 First differs from A003159 at n = 57.
%C A361924 Numbers k such that A361923(k) = A037445(k).
%C A361924 Since Sum_{d infinitary divisor of k} iphi(d) = k, these are numbers k such that the multiset {iphi(d) | d infinitary divisor of k} is a partition of k into distinct parts.
%C A361924 Includes all the odd prime powers (A061345) and all the powers of 4 (A000302).
%C A361924 The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 6, 66, 651, 6497, 64894, 648641, 6485605, 64851632, 648506213, 6485025363, ... . Apparently, this sequence has an asymptotic density 0.6485...
%H A361924 Amiram Eldar, <a href="/A361924/b361924.txt">Table of n, a(n) for n = 1..10000</a>
%t A361924 f[p_, e_] := p^(2^(-1 + Position[Reverse@ IntegerDigits[e, 2], 1]));
%t A361924 iphi[1] = 1; iphi[n_] := Times @@ (Flatten@ (f @@@ FactorInteger[n]) - 1);
%t A361924 idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]; idivs[1] = {1};
%t A361924 q[n_] := Length @ Union[iphi /@ (d = idivs[n])] == Length[d]; Select[Range[100], q]
%o A361924 (PARI) iphi(n) = {my(f=factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], f[i, 1]^(2^(#b-k)) - 1, 1)))}
%o A361924 isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
%o A361924 idivs(n) = {my(d = divisors(n), f = factor(n), idiv = []); for (k=1, #d, if(isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ _Michel Marcus_ at A077609
%o A361924 is(k) = {my(d = idivs(k)); #Set(apply(x->iphi(x), d)) == #d;}
%Y A361924 Cf. A000302, A003159, A037445, A061345, A077609, A091732, A361923.
%Y A361924 Similar sequences: A326835, A348004.
%K A361924 nonn
%O A361924 1,2
%A A361924 _Amiram Eldar_, Mar 30 2023