cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361936 Indices of the squares in the sequence of powerful numbers (A001694).

This page as a plain text file.
%I A361936 #15 Sep 10 2024 14:21:14
%S A361936 1,2,4,5,6,9,10,11,13,14,16,19,20,21,24,26,28,29,31,33,35,36,39,40,41,
%T A361936 44,45,46,48,50,51,55,56,59,60,61,65,67,68,70,71,73,75,76,79,81,84,85,
%U A361936 87,88,90,92,94,96,97,100,102,104,107,109,110,111,114,116,117,119,120
%N A361936 Indices of the squares in the sequence of powerful numbers (A001694).
%C A361936 Equivalently, the number of powerful numbers that do not exceed n^2.
%C A361936 The asymptotic density of this sequence is zeta(3)/zeta(3/2) = 1/A090699 = 0.460139... .
%C A361936 If k is a term of A336175 then a(k) and a(k+1) are consecutive integers, i.e., a(k+1) = a(k) + 1.
%H A361936 Amiram Eldar, <a href="/A361936/b361936.txt">Table of n, a(n) for n = 1..10000</a>
%H A361936 Paul Erdős and George Szekeres, <a href="http://pub.acta.hu/acta/showCustomerArticle.action?id=5508&amp;dataObjectType=article">Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem</a>, Acta Sci. Math. (Szeged), Vol. 7, No. 2 (1935), pp. 95-102.
%H A361936 Solomon W. Golomb, <a href="http://www.jstor.org/stable/2317020">Powerful numbers</a>, Amer. Math. Monthly, Vol. 77, No. 8 (1970), pp. 848-852.
%F A361936 a(n) = A217038(n^2).
%F A361936 a(n+1) - a(n) = A119241(n) + 1.
%F A361936 a(n) = (zeta(3/2)/zeta(3)) * n + O(n^(2/3)).
%t A361936 Position[Select[Range[5000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &], _?(IntegerQ[Sqrt[#]] &)] // Flatten
%o A361936 (PARI) lista(kmax) = {my(c = 0); for(k = 1, kmax, if(ispowerful(k), c++); if(issquare(k), print1(c, ", "))); }
%o A361936 (Python)
%o A361936 from math import isqrt
%o A361936 from sympy import integer_nthroot, factorint
%o A361936 def A361936(n):
%o A361936     m = n**2
%o A361936     return int(sum(isqrt(m//k**3) for k in range(1, integer_nthroot(m, 3)[0]+1) if all(d<=1 for d in factorint(k).values()))) # _Chai Wah Wu_, Sep 10 2024
%Y A361936 Cf. A000290, A001694, A090699, A119241, A217038, A336175.
%K A361936 nonn
%O A361936 1,2
%A A361936 _Amiram Eldar_, Mar 31 2023