This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361943 #7 Apr 01 2023 08:54:24 %S A361943 3,10,3,36,10,36,63,136,9,10,33,36,130,154,15,528,34,36,190,520,63, %T A361943 132,46,528,150,130,54,588,725,150,1023,2080,33,34,630,36,222,190,156, %U A361943 520,615,588,43,132,45,46,235,528,147,150,51,156,53,54,165,2296,513 %N A361943 a(n) is the least multiple of n whose binary expansion is an abelian square (A272653). %C A361943 This sequence is well defined as for any n > 0, A020330(n) is a multiple of n and its binary expansion is an abelian square. %H A361943 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A361943 a(n) = A361944(n) * n. %F A361943 a(n) <= A020330(n). %F A361943 a(n) >= n with equality iff n belongs to A272653. %e A361943 The first terms, alongside their binary expansion, are: %e A361943 n a(n) bin(a(n)) %e A361943 -- ---- ---------- %e A361943 1 3 11 %e A361943 2 10 1010 %e A361943 3 3 11 %e A361943 4 36 100100 %e A361943 5 10 1010 %e A361943 6 36 100100 %e A361943 7 63 111111 %e A361943 8 136 10001000 %e A361943 9 9 1001 %e A361943 10 10 1010 %e A361943 11 33 100001 %e A361943 12 36 100100 %e A361943 13 130 10000010 %e A361943 14 154 10011010 %e A361943 15 15 1111 %e A361943 16 528 1000010000 %o A361943 (PARI) a(n) = { forstep (m = n, oo, n, my (w = #binary(m)); if (w%2==0 && hammingweight(m)==2*hammingweight(m % (2^(w/2))), return (m))) } %o A361943 (Python) %o A361943 from itertools import count %o A361943 def a(n): return next(m for m in count(n, n) if not (w:=m.bit_length())&1 and m.bit_count() == ((m>>(w>>1)).bit_count())<<1) %o A361943 print([a(n) for n in range(1, 60)]) # _Michael S. Branicky_, Mar 31 2023 after _Rémy Sigrist_ %Y A361943 Cf. A020330, A272653, A361944. %K A361943 nonn,base %O A361943 1,1 %A A361943 _Rémy Sigrist_, Mar 31 2023