A361948 Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} binomial((j + 1)*n - 1, n - 1) if n >= 1, and A(0, k) = 1 for all k.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 10, 15, 1, 1, 1, 1, 35, 280, 105, 1, 1, 1, 1, 126, 5775, 15400, 945, 1, 1, 1, 1, 462, 126126, 2627625, 1401400, 10395, 1, 1, 1, 1, 1716, 2858856, 488864376, 2546168625, 190590400, 135135, 1, 1
Offset: 0
Examples
Array A(n, k) starts: [0] 1, 1, 1, 1, 1, 1, ... [1] 1, 1, 1, 1, 1, 1, ... [2] 1, 1, 3, 15, 105, 945, ... A001147 [3] 1, 1, 10, 280, 15400, 1401400, ... A025035 [4] 1, 1, 35, 5775, 2627625, 2546168625, ... A025036 [5] 1, 1, 126, 126126, 488864376, 5194672859376, ... A025037 [6] 1, 1, 462, 2858856, 96197645544, 11423951396577720, ... A025038 . Triangle A(n-k, k) starts: [0] 1; [1] 1, 1; [2] 1, 1, 1; [3] 1, 1, 1, 1; [4] 1, 1, 3, 1, 1; [5] 1, 1, 10, 15, 1, 1; [6] 1, 1, 35, 280, 105, 1, 1;
Links
- Cyril Banderier, Philippe Marchal, and Michael Wallner, Rectangular Young tableaux with local decreases and the density method for uniform random generation (short version), arXiv:1805.09017 [cs.DM], 2018.
- Antoine Chambert-Loir, Combinatorics of partitions, blog post 2024.
- Alexander Karpov, Generalized knockout tournament seedings, International Journal of Computer Science in Sport, vol. 17(2), 2018.
Crossrefs
Programs
-
Maple
A := (n, k) -> mul(binomial((j + 1)*n - 1, n - 1), j = 0..k-1): seq(seq(A(n-k, k), k = 0..n), n = 0..9); # Alternative, using recursion: A := proc(n, k) local P; P := proc(n, k) option remember; if n = 0 then return x^k*k! fi; if k = 0 then 1 else add(binomial(n*k, n*j)* P(n,k-j)*x, j=1..k) fi end: coeff(P(n, k), x, k) / k! end: seq(print(seq(A(n, k), k = 0..5)), n = 0..6); # Alternative, using exponential generating function: egf := n -> ifelse(n=0, 1, exp(x^n/n!)): ser := n -> series(egf(n), x, 8*n): row := n -> local k; seq((n*k)!*coeff(ser(n), x, n*k), k = 0..6): for n from 0 to 6 do [n], row(n) od; # Peter Luschny, Aug 15 2024
-
Mathematica
A[n_, k_] := Product[Binomial[n (j + 1) - 1, n - 1], {j, 0, k - 1}]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 13 2023 *)
-
SageMath
def Arow(n, size): if n == 0: return [1] * size return [prod(binomial((j + 1)*n - 1, n - 1) for j in range(k)) for k in range(size)] for n in range(7): print(Arow(n, 7)) # Alternative, using exponential generating function: def SetPolyLeadCoeff(m, n): x, z = var("x, z") if m == 0: return 1 w = exp(2 * pi * I / m) o = sum(exp(z * w ** k) for k in range(m)) / m t = exp(x * (o - 1)).taylor(z, 0, m*n) p = factorial(m*n) * t.coefficient(z, m*n) return p.leading_coefficient(x) for m in range(7): print([SetPolyLeadCoeff(m, k) for k in range(6)])
Formula
A(n, k) = (1/k!) * [x^k] P(n, k), where P(n, k) = k!*x^k if n = 0 and otherwise 1 if k = 0 and otherwise Sum_{j=1..k} binomial(n*k, n*j)*P(n, k-j)*x.
A(n, k) = (n*k)!*[x^(n*k)] exp(x^n/n!) for n >= 1. - Peter Luschny, Aug 15 2024
Comments