This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361956 #11 Apr 03 2023 21:09:34 %S A361956 1,0,1,0,1,2,0,1,6,6,0,1,50,36,24,0,1,510,510,240,120,0,1,7682,10620, %T A361956 4800,1800,720,0,1,161406,312606,136920,47040,15120,5040,0,1,4747010, %U A361956 13439076,5630184,1678320,493920,141120,40320,0,1,194342910,821218110,319384800,83963880,21137760,5594400,1451520,362880 %N A361956 Triangle read by rows: T(n,k) is the number of labeled tiered posets with n elements and height k. %C A361956 A tiered poset is a partially ordered set in which every maximal chain has the same length. %H A361956 Andrew Howroyd, <a href="/A361956/b361956.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50). %e A361956 Triangle begins: %e A361956 1; %e A361956 0, 1; %e A361956 0, 1, 2; %e A361956 0, 1, 6, 6; %e A361956 0, 1, 50, 36, 24; %e A361956 0, 1, 510, 510, 240, 120; %e A361956 0, 1, 7682, 10620, 4800, 1800, 720; %e A361956 0, 1, 161406, 312606, 136920, 47040, 15120, 5040; %e A361956 ... %o A361956 (PARI) %o A361956 S(M)={my(N=matrix(#M-1, #M-1, i, j, sum(k=1, i-j+1, (2^j-1)^k*M[i-j+1, k])/j!)); for(i=1, #N, for(j=1, i, N[i,j] -= sum(k=1, j-1, N[i-k, j-k]/k!))); N} %o A361956 C(n)={my(M=matrix(n+1,n+1), R=M); M[1,1]=R[1,1]=1; for(h=1, n, M=S(M); for(i=h, n, R[i+1,h+1] = i!*vecsum(M[i-h+1,]))); R} %o A361956 { my(A=C(7)); for(i=1, #A, print(A[i, 1..i])) } %Y A361956 Row sums are A223911. %Y A361956 Column k=2 is A052332. %Y A361956 Main diagonal is A000142. %Y A361956 The unlabeled version is A361957. %Y A361956 Cf. A222864, A361951. %K A361956 nonn,tabl %O A361956 0,6 %A A361956 _Andrew Howroyd_, Apr 02 2023