This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361960 #5 Mar 31 2023 11:22:52 %S A361960 2,12,71,430,2652,16576,104652,665874,4263050,27430260,177233355, %T A361960 1149159336,7473264736,48725661120,318403991656,2084753927898, %U A361960 13673789668854,89825336129620,590901795716925,3892055708986830,25664871706721940,169414775012098560,1119378775384200240,7402571891557073400,48993463632294517752,324501821324483687856 %N A361960 Total semiperimeter of 2-Fuss-Catalan polyominoes of length 2n. %H A361960 Toufik Mansour, I. L. Ramirez, <a href="https://ajc.maths.uq.edu.au/pdf/81/ajc_v81_p447.pdf">Enumerations of polyominoes determined by Fuss-Catalan words</a>, Australas. J. Combin. 81 (3) (2021) 447-457, Table 2 %F A361960 Conjecture: D-finite with recurrence 4*n*(2*n+1)*a(n) -6*n*(11*n-5)*a(n-1) +3*(43*n^2-169*n+130)*a(n-2) -36*(3*n-8)*(3*n-10)*a(n-3)=0. %p A361960 Per := proc(s,p,n) %p A361960 local i,j,a ; %p A361960 a := 0 ; %p A361960 for i from 0 to n-1 do %p A361960 for j from 0 to n-1-i do %p A361960 a := a+ (-1)^j*p^(n+1+i+(s+1)*j) *binomial(n-1+i,i)*binomial(n,j)*binomial(n+s*j,n-1-i-j)/(1-p)^(i+j) ; %p A361960 end do: %p A361960 end do: %p A361960 expand(a/n) ; %p A361960 factor(%) ; %p A361960 end proc: %p A361960 Per1std := proc(s,n) %p A361960 local p; %p A361960 Per(s,p,n) ; %p A361960 diff(%,p) ; %p A361960 factor(%) ; %p A361960 subs(p=1,%) ; %p A361960 end proc: %p A361960 seq(Per1std(2,n),n=1..30) ; %Y A361960 Cf. A024482 (1-Fuss-Catalan), A075045 (total area), A361961 (3-Fuss-Catalan). %K A361960 nonn,easy %O A361960 1,1 %A A361960 _R. J. Mathar_, Mar 31 2023