This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361961 #6 Jun 10 2024 00:11:18 %S A361961 2,18,150,1275,11033,96768,857440,7658001,68827440,621769016, %T A361961 5640718746,51355222113,468976190634,4293892636600,39403880112240, %U A361961 362321464909965,3337465898598408,30791007409655928,284475382593582680,2631594710532743340,24372218297220901965,225958143637966827240 %N A361961 Total semiperimeter of 3-Fuss-Catalan polyominoes of length 3n. %H A361961 Toufik Mansour, I. L. Ramirez, <a href="https://ajc.maths.uq.edu.au/pdf/81/ajc_v81_p447.pdf">Enumerations of polyominoes determined by Fuss-Catalan words</a>, Australas. J. Combin. 81 (3) (2021) 447-457, Table 2. %F A361961 Conjecture: D-finite with recurrence 3*n*(396221*n -410120) *(3*n-1) *(3*n+1) *a(n) +4*(-86981513*n^4 +457143117*n^3 -996839467*n^2 +906061905*n -279161658) *a(n-1) +32*(2*n-5) *(4*n-9) *(4*n-7) *(2282347*n -1795413)*a(n-2)=0. %p A361961 Per := proc(s,p,n) %p A361961 local i,j,a ; %p A361961 a := 0 ; %p A361961 for i from 0 to n-1 do %p A361961 for j from 0 to n-1-i do %p A361961 a := a+ (-1)^j*p^(n+1+i+(s+1)*j) *binomial(n-1+i,i)*binomial(n,j)*binomial(n+s*j,n-1-i-j)/(1-p)^(i+j) ; %p A361961 end do: %p A361961 end do: %p A361961 expand(a/n) ; %p A361961 factor(%) ; %p A361961 end proc: %p A361961 Per1std := proc(s,n) %p A361961 local p; %p A361961 Per(s,p,n) ; %p A361961 diff(%,p) ; %p A361961 factor(%) ; %p A361961 subs(p=1,%) ; %p A361961 end proc: %p A361961 seq(Per1std(3,n),n=1..30) ; %Y A361961 Cf. A024482 (1-Fuss-Catalan), A078999 (total area), A361960 (2-Fuss-Catalan). %K A361961 nonn,easy %O A361961 1,1 %A A361961 _R. J. Mathar_, Mar 31 2023