This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361965 #6 Jul 23 2025 16:04:40 %S A361965 4,96,2672,78848,2400896,74568704,2347934464,74675511296, %T A361965 2393372833792,77176031297536,2500887165493248,81372026697351168, %U A361965 2656708513978580992,86992366046604165120,2855701159218522030080,93950313500933860884480,3096866628586659248603136 %N A361965 Total number of peaks in 3-Fuss-skew paths of semilength n. %H A361965 Toufik Mansour, Jose Luis Ramirez, <a href="https://doi.org/10.33039/ami.2022.01.002">Enumration of Fuss-skew paths</a>, Ann. Math. Inform. 55 (2022) 125-136, table 2, l=3. %p A361965 FussSkewP := proc(l,n) %p A361965 local a,j,k ; %p A361965 a := 0 ; %p A361965 for j from 0 to n do %p A361965 a := a+sum( binomial(n,j) *binomial(j,k) *binomial(n*(l-1),n-2*j+k-1) %p A361965 * 2^(n*(l-2)+2*j-k+1)*3^(k-1)*(3*(n-j)+k),k=0..j) ; %p A361965 end do: %p A361965 a/n ; %p A361965 end proc: %p A361965 seq(FussSkewP(3,n),n=1..40) ; %Y A361965 Cf. A026378 (1-Fuss-skew), A361964 (2-Fuss-skew) %K A361965 nonn,easy %O A361965 1,1 %A A361965 _R. J. Mathar_, Mar 31 2023